نوع مقاله : پژوهشی

نویسندگان

1 دانشکده مهندسی برق- واحد نجف‌آباد، دانشگاه آزاد اسلامی، نجف‌آباد، ایران

2 مرکز تحقیقات ریز شبکه‌های هوشمند- واحد نجف‌آباد، دانشگاه آزاد اسلامی، نجف‌آباد، ایران

چکیده

هدف از این تحقیق، مطالعه تأثیر شیار دوم در دندانه استاتور بر روی عملکرد دو ساختار متداول روتور به نام­های اسپکی و سطحی، برای موتور جریان مستقیم بدون جاروبک (BLDC) است. نتایج برای حالت­های مختلف بسته بودن شیارها ارائه و مقایسه شده است. سپس با جای­گذاری یک سیم­پیچ تغذیه شده با جریان مستقیم و یا آهنرباهای مغناطیس دائم درون شیار دندانه­های استاتور موتوری که در مراحل قبل بهترین عملکرد را داشته، دو مدل هیبرید BLDC معرفی و مورد مطالعه قرار گرفته­اند. نتایج حاکی از آن است که رویکرد بستن شیار به شدت بر روی نوسانات گشتاور مؤثر است در حالی­که گشتاور تولیدی هر دو ساختار تقریباً ثابت مانده است. در خصوص HBLDC، میدان الکترومغناطیسی جانبی که در شیار دندانه استاتور جای­گذاری شده عملکرد گشتاوری موتورها را بهبود می­بخشد. در همه مراحل این تحقیق از روش اجزای محدود استفاده شده است.

چکیده تصویری

طراحی و تحلیل گشتاور موتور بدون جاروبک جریان مستقیم شیار دوبل با آهنرباهای اسپکی و سطحی با استفاده از روش اجزاء محدود

تازه های تحقیق

- مشخصه‌های خروجی موتور بدون جاروبک جریان مستقیم سه­فاز تحت تاثیر تغییرات ساختارهای استاتور هستند.

- از میان ساختارهای مختلف دو ساختار اسپکی-قوسی و سطحی-ذوزنقه­ای مشخصه‌های بهتری را نتیجه می‌دهند.

- در مدل‌های اسپکی-قوسی و سطحی-ذوزنقه­ای در موتور بدون جاروبک جریان مستقیم سه­فاز با ایجاد شیار در دندانه استاتور با عرض 5 میلی­متر در مدل اسپکی و با عرض 7 میلی­متر در مدل سطحی، بهترین عملکرد گشتاور نتیجه می‌شود.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Design and Torque Analysis of Double-Slot Surface and Spoke-Type BLDC Motor Using Finite Element Method

نویسندگان [English]

  • Ali Esteki 1
  • Behrooz Majidi 2

1 Department of Electrical Engineering- Najafabad Branch, Islamic Azad University, Najafabad, Iran

2 Smart Microgrid Research Center- Najafabad Branch, Islamic Azad University, Najafabad, Iran

چکیده [English]

The aim of this paper is to investigate the impact of second slot in stator tooth on performance of two commonly used rotor structures, namely Surface-type and Spoke-type, for a brushless direct current (BLDC) motor. The comparative results are reported for different closing slot conditions. Afterwards by inserting a direct current driven winding or permanent magnets (PMs) into the stator tooth slots of best performed model of previous stage, two hybrid-brushless direct current (HBLDC) motors are introduced and studied. The results demonstrated that slot-closing strategy has high impact on torque fluctuations while the torque produced remain almost constant. For HBLDC, the auxiliary Electro-Magnetic field, placed in stator slot, developed torque performance of the motors. The finite element method (FEM) is used in stages of study.

کلیدواژه‌ها [English]

  • brushless direct current
  • Double-Slot Stator
  • Finite Element Method
  • Surface and Spoke-type
  • torque

Citation: A. Esteki, B. Majidi, "Design and torque analysis of double-slot surface and spoke-type BLDC motor using finite element method", Journal of Intelligent Procedures in Electrical Technology, vol. 14, no. 55, pp. 67-82, December 2023 (in Persian).

[1] S.J. Wang, C.C. Cheng, S.K. Lin, J.J. Ju, D.R. Huang, “An automatic pin identification method for a three-phase DC brushless motor”, IEEE Trans. on Magnetics, vol. 41, no. 10, pp. 3916-3918, Oct. 2005 (doi: 10.1109/TMAG.2005.854970).
[2] W. Tong, S. Li, X. Pan, S. Wu, R. Tang, “Analytical model for cogging torque calculation in surface-mounted permanent magnet motors with rotor eccentricity and magnet defects", IEEE Trans. on Energy Conversion, vol. 35, no. 4, pp. 2191-2200, Dec. 2020 (doi: 10.1109/TEC.2020.2995902).
[3] C.N. Tanaka, I.E. Chabu, “Flux reversal free splittable stator core doubly salient permanent magnet motor”, IEEE Latin America Transactions, vol. 18, no. 08, pp. 1329-1336, Aug. 2020 (doi: 10.1109/TLA.202­0.9­111067).
[4] J.F. Gieras, M. Wing, “Permanent magnet motor technology: Design and applications”, 2th Edition, Marcel Dekker, Inc., 2002.
[5] B. Majidi, J. Milimonfared, “Modeling, design, and sensitivity analysis of a continuous magnetic gear using finite-element method”, Electric Power Components and Systems, vol. 44, no. 2, pp. 1029-1039, 2016 (doi: 10.1080/15325008.2016.1147507).
[6] B. Majidi, J. Milimonfared, “Design and analysis of an interior continuous magnetic gear box using finite element method”, Applied Computational Electromagnetics Society Journal, vol. 30, no. 1, pp. 109-116-,  January 2015.
[7] D. Karamalian, B. Majidi, M.R. Yousefi, “Rotor design and analysis of 4/2 SRMs to produce continuous torque using finite element method”, Journal of Intelligent Procedures in Electrical Technology, vol. 8, no. 33, pp. 13-20, Jan. 2017 (in Persian) (dor:  20.1001.1.23223871.1396.8.32.2.2).
[8] A. Tavakolzadeh, J. Feiz, G. Shahgholian, “Comparision between two methods to decrease cogging torque in single phase surface permanent magnet motor”, Journal of Intelligent Procedures in Electrical Technology, vol. 4, no. 13, pp. 23-28, March 2013 (in Persian) (dor: 20.1001.1.23223871.1392.4.13.3.7).
[9] M. Jafarboland, A. Nekoubin, “Designing a two-phase BLDC motor and finite-element analysis of stator slots structure effects on the motor operation”, Journal of Intelligent Procedures in Electrical Technology, vol. 5, no. 17, pp. 15-20, June 2014 (in Persian) (dor: 20.1001.1.23223871.1393.5.17.2.1).
[10] B.K. Lee, M. Ehsani, “Advanced BLDC motor drive for low cost and high performance propulsion system in electric and hybrid vehicles”, Proceeding of IEEE/IEMDC, Cambridge, MA, pp. 246-251, June 2021 (doi: 10.1109/IEMDC.2001.939307).
[11] P. Bogusz, M. Korkosz, A. Powrózek, J. Prokop, P. Wygonik, “An analysis of operation of brushless DC machine used in unmanned aerial vehicle hybrid drive”, Proceeding of the IEEE/EDPE, Tatranska Lomnica, Slovakia, Sept. 2015 (doi: 10.1109/EDPE.2015.7325328).
[12] P. Bogusz, M. Korkosz, A. Powrózek, J. Prokop, P. Wygonik, “An analysis of properties of the BLDC motor for unmanned aerial vehicle hybrid drive”, Proceeding of the IEEE/EDPE, Tatranska Lomnica, Slovakia, Sept. 2015 (doi: 10.1109/EDPE.2015.7325338).
[13] P. Bogusz, M. Korkosz, J. Prokop, “The analysis of high-speed multi-pole brushless motor with permanent magnets for hybrid drive of unmanned aerial vehicle”, Proceeding of the IEEE/SME, pp. 1-6, Naleczow, Poland, Juen 2017 (doi: 10.1109/ISEM.2017.7993581).
[14] R. Praveen, M. Ravichandran V.S. Achari, V.J. Raj, G. Madhu, G. Bindu, “Design and analysis of zero cogging brushless dc motor for spacecraft applications”, Proceeding of the IEEE/ECTI, pp. 254-258, Chiang Mai, Thailand, May 2010.
[15] P. Bogusz, M. Korkosz, J. Prokop, “A study of design process of BLDC motor for aircraft hybrid drive”, Proceeding of the IEEE/ISIE, pp. 508-513, Gdansk, Poland, June 2011 (doi: 10.1109/ISIE.2011.5984077).
[16] S. Yang, Y. Jung, J. Seo, M. Lee, J.H. Kim, “Numerical and experimental study on the cooling performance affected by ventilation holes of a BLDC motor for multi-copters”, Proceeding of the IEEE/PEMC, Budapest, Hungary, pp. 293-298, Nov. 2018 (doi: 10.1109/EPEPEMC.2018.8521995).
[17] H.M. Yang, J.W. Cha, B.H. Baik, B.I. Kwon, “Design and analysis of high speed BLDC motor for centrifuge”, Proceeding of the IEEE/ICEMS, pp. 968-972, Pattaya, Thailand, Oct. 2015 (doi: 10.1109/ICE­MS.20­15.7385176).
[18] Z. Liu, S. Chen, Q. Zhang, “Design of brushless DC spindle motors for high speed HDD recording”, IEEE Trans. on Magnetics, vol. 34, no. 2, pp. 483-485, March 1998 (doi: 10.1109/20.667799).
[19] S.X. Chen, Q.D. Zhang, H.C. Chong, T. Komatsu, C.H. Kang, “Some design and prototyping issues on a 20000 rpm HDD spindle motor with a ferro-fluid bearing system”, IEEE Trans.  on Magnetics, vol. 37, no. 2, pp. 805-809, March 2001 (doi: 1 0.1109/20.917620).
[20] S. Sung, G. Jang, J. Jang, J. Song, H. Lee, “Vibration and noise in a HDD spindle motor arising from the axial UMF ripple”, IEEE Trans. on Magnetics, vol. 49, no. 6, pp. 2489-2494, May 2013 (doi: 10.1109/­TMAG­.2013.2245318).
[21] S. Sung, G. Jang, H. Lee, “Torque ripple and unbalanced magnetic force of a BLDC motor due to the connecting wire between slot windings”, IEEE Trans. on Magnetics, vol. 48, no. 11, pp. 3319-3322, Oct. 2012 (doi: 10.1109/TMAG.2012.2198879).
[22] M.R. Pahlavani, Y.S. Ayat, A. Vahedi, “Minimisation of torque ripple in slotless axial flux BLDC motors in terms of design considerations”, IET Electric Power Applications, vol. 11, no. 6, pp. 1124-1130, March 2017 (doi: 10.1049/iet-epa.2016.0754).
[23] J. Hur, H.G. Sung, B.K. Lee, C.Y. Won, B.H. Lee, “Development of high-efficiency 42V cooling fan motor for hybrid electric vehicle applications”, Proceeding of the IEEE/VPPC, pp. 1-6, Windsor, UK, Sept. 2006 (doi: 10.1109/VPPC.2006.364307).
[24] A. Sateesh, P. Sudip, P. Anjaneya, J. Kumar, “Modelling of brushless DC hub motor to control the speed of indigenous powered wheelchair”, Proceeding of the IEEE/ComPE, pp. 091-094, Shillong, India, July 2020 (doi: 10.1109/ComPE49325.2020.9200192).
[25] W. Cui, Y. Gong, M. Xu, “A permanent magnet brushless DC motor with bifilar winding for automotive engine cooling application”, IEEE Trans. on Magnetics, vol. 48, no. 11, pp.3348-3351, Nov. 2012 (doi: 10.11­09/TMAG.2012.2202095).
[26] T.Y. Lee, M.K. Seo, Y.J. Kim, S.Y. Jung, “Motor design and characteristics comparison of outer-rotor-type BLDC motor and BLAC motor based on numerical analysis”, IEEE Trans. on Applied Superconductivity, vol. 26, no. 4, pp. 1-6,  June 2016 (doi: 10.1109/TASC.2016.2548079).
[27] S. Sashidhar, B. Fernandes, “A low-cost semi-modular dual-stack PM BLDC motor for a PV based bore-well submersible pump”, Proceeding of the IEEE/ICEM, pp. 24-30, Berlin, Germany, Sept. 2014 (doi: 10.1109/ICELMACH.2014.6960154).
[28] S. Sashidhar, B. Fernandes, “Comparison of a ferrite based single, three-phase spoke and surface permanent magnet BLDC motor for a PV submersible water pump”, Proceeding of the IEEE/ICIT, pp. 671-676, Seville, Spain , March 2015 (doi: 10.1109/ICIT.2015.7125175).
[29] S. Sashidhar, B. Fernandes, “A novel ferrite SMDS spoke-type BLDC motor for PV bore-well submersible water pumps”, IEEE Trans. on Industrial Electronics, vol. 64, no. 1, pp. 104-114,  Jan. 2016 (doi: 10.11­09/T­IE.2016.2609841).
[30] Z. Zhang, Y. Yan, Y. Tao, “A new topology of low speed doubly salient brushless DC generator for wind power generation”, IEEE Trans. on Magnetics, Vol. 48, no. 3, pp. 1227-1233, March 2012 (doi: 10.1109/TMAG.2011.2169805).
[31] M. Fazil, K. Rajagopal, “A novel air-gap profile of single-phase permanent-magnet brushless DC motor for starting torque improvement and cogging torque reduction”, IEEE Trans. on magnetics, vol. 46, no.11, pp. 3928-3932,  Nov. 2010 (doi: 10.1109/TMAG.2010.2057514 ).
[32] J. Kumar, V. Gowtham, S. Sashidhar, “Comparison of synchronous reluctance, PM assisted synchronous reluctance and spoke-type BLDC motor for an E-rickshaw”, Proceeding of the IEEE/ICIT, Valencia, Spain, March 2021(doi: 10.1109/ICIT46573.2021.9453466).
[33] C. He, T. Wu, “Sesign, analysis and experiment of a permanent magnet brushless DC motor for electric impact wrench”, Proceeding of the IEEE/ICEM, Lausanne, Switzerland, Nov. 2016 (doi: 10.1109/ICELMA­CH.­2016.7732736).
[34] G.T. Paula, J. Monteiro, T. Almeida, M. Santana, “Different slot configurations for direct-drive pm brushless machines”, IEEE Latin America Transactions, vol. 13, no. 3, pp. 634-639, March 2015 (doi: 10.1109/TLA.2015.7069085).
[35] S.K. Lee, G.H. Kang, J. Hur, B.W. Kim, “Stator and rotor shape designs of interior permanent magnet type brushless DC motor for reducing torque fluctuation”, IEEE Trans. on Magnetics, vol. 48, no. 11, pp. 4662-4665,  Nov. 2012 (doi: 10.1109/TMAG.2012.2201455).
[36] P. Yeji, K. Hyunwoo, I. Hyungkwan, H. Sang-Hawn, L. Ju, J. Dong-Hoon, “Efficiency improvement of permanent magnet BLDC with halbach magnet array for drone”, IEEE Trans. on Applied Superconductivity, vol. 30, no. 4, pp. 1-9,  June 2020 (doi: 10.1109/TASC.2020.2971672).
[37] S. Sashidhar, B. Fernandes, “Braking torque due to cross magnetization in unsaturated IPM BLDC machines and its mitigation”, IEEE Trans. on Magnetics, vol. 53, no. 1, pp. 1-9, Oct. 2016 (doi: 10.110­9/T­MAG­­.2016.2618343).