نوع مقاله : پژوهشی

نویسندگان

دانشکده مهندسی برق- دانشگاه صنعتی خواجه نصیرالدین طوسی، تهران، ایران

چکیده

با توجه به افزایش استفاده از انرژی باد و تاثیر قابل ‌توجه آن بر شبکه قدرت، تحمل خطا در توربین بادی برای افزایش قابلیت اطمینان و سطح در دسترس بودن آن ضروری است. در این مقاله، یک روش جدید تحمل خطای کلید‌ باز چندگانه برای مبدل AC-DC شش‌فاز، به‌عنوان آسیب‌پذیرترین قسمت سیستم توربین بادی ارایه شده است. روش پیشنهادی تحمل خطا از حالت افزونگی بردارهای فضایی مبدل شش‌فاز در مدولاسیون پهنای پالس بردار فضایی (SVPWM) استفاده نموده است و با تغییر سیگنال‌های کلیدزنی در ناحیه‌های خطادار، بردار فضایی دیگری را جایگزین بردار فضایی مطلوب نموده تا از ایجاد بردار فضایی نامطلوب براثر خطا کلید باز جلوگیری شود. مزیت اصلی روش پیشنهادی این است که بدون افزودن پایه، کلید یا تریاک (TRIAC)، به مدار مبدل و همچنین بدون نیاز به محاسبات پیچیده، خطاهای کلید باز مبدل را تحمل نموده و مقدار اضافه جریان و مقدار اعوجاج هارمونیک کل (THD) ناشی از این خطاها را در فازهای سالم و خطادار کاهش داده است. در نهایت روش پیشنهادی تحمل خطا با شبیه‌سازی در محیط سیمولینک نرم‌افزار متلب ارزیابی ‌شده و نتایج حاصل از این شبیه‌سازی جهت تایید اثر بخشی آن ارائه ‌شده است.

چکیده تصویری

روش SVPWM تحمل خطا برای خطاهای سوئیچ‌باز چندگانه در مبدل توربین بادی شش‌فاز

تازه های تحقیق

- استفاده از سیستم چندفاز جهت افزایش قابلیت اطمینان، درجه آزادی و کاهش جریان هر فاز برای ولتاژ نامی یکسان

- تحمل خطاهای کلید باز با استفاده از حالت افزونگی بردارهای فضایی شش فاز در SVPWM بدون تجهیزات اضافی و بدون نیاز به محاسبات پیچیده

- اجرای تکنیک تحمل خطای برای خطای کلید باز چندگانه که پیچیده تر از خطای کلید باز تکی است.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Fault-Tolerant SVPWM Method for Multiple Open-Switch Faults in Six-Phase Wind Turbine Converter

نویسندگان [English]

  • Rouhollah Bolbolnia
  • Karim Abbaszadeh

Department of Electrical and Computer Engineering- Faculty of Electrical Engineering, Khajeh Nasir Toosi University of Technology, Tehran, Iran

چکیده [English]

Due to the rapid growth of wind energy and its significant effect on the power grid, fault-tolerant in wind turbines is considered crucial to increase their reliability and availability levels. This paper presents a fault-tolerant technique for multiple open-switch faults in a six-phase AC-DC converter as the most vulnerable components of the wind turbine system. The proposed fault-tolerant technique uses the redundancy mode of six-phase space vectors in space vector pulse width modulation (SVPWM) and changes the switching signals in fault sectors, replacing the desired space vector with another space vector to avoid creating an undesired space vector. The main advantage of this technique is that, without adding any legs, switches, or triode for alternating currents (TRIAC) to the converter circuit, and without the need for complex calculations, the open switch faults are tolerated and the value of overcurrent and total harmonic distortion (THD) caused by the open switch faults on the healthy and faulty phases are reduced. Finally, the proposed fault-tolerant technique is evaluated by MATLAB simulation and the results of this simulation show its effectiveness.

کلیدواژه‌ها [English]

  • Fault-tolerant
  • multiple open-switch fault
  • six-phase converter
  • space vector pulse width modulation
  • Wind turbine

Citation: R. Bolbolnia, K. Abbaszadeh, "Fault-tolerant SVPWM method for multiple open-switch faults in six-phase wind turbine converter", Journal of Intelligent Procedures in Electrical Technology, vol. 14, no. 54, pp. 75-90, September 2023 (in Persian).

[1] M. Shahbazi, P. Poure, S. Saadate, "Real-time power switch fault diagnosis and fault-tolerant operation in a DFIG-based wind energy system", Renewable Energy, vol. 116, pp. 209-218, Feb. 2018 (doi: 10.101­6/j.r­ene­ne.2017.02.066).
[2] M. Jafarboland, E. Babaei, "Sensorless speed/position estimation for permanent magnet synchronous machine via extended kalman filter", Journal of Intelligent Procedures in Electrical Technology, vol. 1, no. 1, pp. 31-36, Sept. 2009 (dor: 20.1001.1.23223871.1389.1.2.4.5) (in Persian).
[3] M. Nasiri, S. Mobayen, Q.M. Zhu, "Super-twisting sliding mode control for gearless PMSG-based wind turbine", Complexity, Article Number: 6141607, April 2019 (doi: 10.1155/2019/6141607).
[4] H.H. Mousa, A.R. Youssef, E.E. Mohamed, "Variable step size P&O MPPT algorithm for optimal power extraction of multi-phase PMSG based wind generation system", International Journal of Electrical Power and Energy Systems, vol. 108, pp. 218-231, June 2019 (doi: 10.1016/j.ijepes.2018.12.044).
[5] Z. Gao, X. Liu, "An overview on fault diagnosis, prognosis and resilient control for wind turbine systems", Processes, vol. 9, no. 2, pp. 300-319, Feb. 2021 (doi: 10.3390/pr9020300).
[6] W. Qiao, D. Lu, "A survey on wind turbine condition monitoring and fault diagnosis—Part I: Components and subsystems", IEEE Trans. on Industrial Electronics, vol. 62, no. 10, pp. 6536-6545, April 2015 (doi: 10.1109/TIE.2015.2422112).
[7] C. Kaidis, B. Uzunoglu, F. Amoiralis, "Wind turbine reliability estimation for different assemblies and failure severity categories", IET Renewable Power Generation, vol. 9, no. 8, pp. 892-899, Nov. 2015 (doi: 10.1049/iet-rpg.2015.0020).
[8] H. Guo, S. Guo, J. Xu, X. Tian, "Power switch open-circuit fault diagnosis of six-phase fault tolerant permanent magnet synchronous motor system under normal and fault-tolerant operation conditions using the average current park's vector approach", IEEE Trans. on Power Electronics, vol. 36, no. 3, pp. 2641-2660, Aug. 2020 (doi: 10.1109/TPEL.2020.3017637).
[9] W. S. Im, J.M. Kim, D.C. Lee, K.B. Lee, "Diagnosis and fault-tolerant control of three-phase AC–DC PWM converter systems", IEEE Trans. on Industry Applications, vol. 49, no. 4, pp. 1539-1547, April 2013 (doi: 10.1109/TIA.2013.2255111).
[10] F. Asghar, M. Talha, S.H. Kim, "Neural network based fault detection and diagnosis system for three-phase inverter in variable speed drive with induction motor", Journal of Control Science and Engineering, Article Number: 1286318, Nov. 2016 (doi: 10.1155/2016/1286318).
[11] H. K. Ku, J.H. Jung, J.W. Park, J.M. Kim, Y.D. Son, "Fault-tolerant control strategy for open-circuit fault of two-parallel-connected three-phase AC–DC two-level PWM converter", Journal of Power Electronics, vol. 20, no. 3, pp. 731-742, May 2020 (doi: 10.1007/s43236-020-00066-y).
[12] H. Meshgin-Kelk, M. Mohammadpour-Hasan-Kiadeh, "Detection of short circuit faults in power transfo­rm­e­r by the measurement of its windings voltages and currents using a neuro-fuzzy system", Journal of Intelligent Procedures in Electrical Technology, vol. 13, no. 50, pp. 87-99, Sept. 2022 (dor: 20.100­1.­1.2­322­38­7­1.1401.13.50.5.6) (in Persian).
[13] R. Bolbolnia, K. Abbaszadeh, M. Nasiri, "Diagnosis and fault-tolerant control of six-phase wind turbine under multiple open-switch faults", Mathematical Problems in Engineering, Oct. 2021 (doi: 10.1155/20­21/99­99918).
[14] P. Duan, K.G. Xie, L. Zhang, X. Rong, "Open-switch fault diagnosis and system reconfiguration of doubly fed wind power converter used in a microgrid", IEEE Trans. on Power Electronics, vol. 26, no. 3, pp. 816-821, Nov. 2010 (doi: 10.1109/TPEL.2010.2095470).
[15] A. Mohamed, S. Vanteddu, O. Mohammed, "Protection of bi-directional AC-DC/DC-AC converter in hybrid AC/DC microgrids", Proceedings of the IEEE/SECON, Southeastcon, pp. 1-6, Orlando, FL, USA, March 2012 (doi: 10.1109/SECon.2012.6196958).
[16] S. Karimi, A. Gaillard, P. Poure, S. Saadate, "FPGA-based real-time power converter failure diagnosis for wind energy conversion systems", IEEE Trans. on Industrial Electronics, vol. 55, no. 12, pp. 4299-4308, Dec. 2008 (doi: 10.1109/TIE.2008.2005244).
[17] M.O. Aboelhassan, T. Raminosoa, A. Goodman, L.D. Lillo, C. Gerada, "Performance evaluation of a vector-control fault-tolerant flux-switching motor drive", IEEE Trans. on Industrial Electronics, vol. 60, no. 8, pp. 2997-3006, May. 2012 (doi: 10.1109/TIE.2012.2200221).
[18] Z.Q. Zhu, K. Utaikaifa, K. Hoang, Y. Liu, D. Howe, "Direct torque control of three-phase PM brushless AC motor with one phase open-circuit fault", Proceeding of the IEEE/IMEDC, pp. 1180-1187, Miami, FL, USA, May 2009 (doi: 10.1109/IEMDC.2009.5075353).
[19] I. Jlassi, A.J.M. Cardoso, "Fault-tolerant back-to-back converter for direct-drive PMSG wind turbines using direct torque and power control techniques", IEEE Trans. on Power Electronics, vol. 34, no. 11, pp. 11215-11227, Nov. 2019 (doi: 10.1109/TPEL.2019.2897541).
[20] Y. Hu, L. Zhang, W. Huang, F. Bu, "A fault-tolerant induction generator system based on instantaneous torque control", IEEE Trans. on Energy Conversion, vol. 25, no. 2, pp. 412-421, Mar. 2010 (doi: 10.1109/T­EC.2­009.2038898).
[21] B.A. Welchko, T.A. Lipo, T.M. Jahns, S.E. Schulz, "Fault tolerant three-phase AC motor drive topologies: A comparison of features, cost, and limitations", IEEE Trans. on power electronics, vol. 19, no. 4, pp. 1108-1116, July 2004 (doi: 10.1109/TPEL.2004.830074).
[22] N.M. Freire, A.J.M. Cardoso, "A fault-tolerant PMSG drive for wind turbine applications with minimal increase of the hardware requirements", IEEE Trans. on Industry Applications, vol. 50, no. 3, pp. 2039-2049, May. 2013 (doi: 10.1109/TIA.2013.2282935).
[23] N.M. Freire, A.J.M. Cardoso, "Fault-tolerant PMSG drive with reduced DC-link ratings for wind turbine applications",  IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 2, no. 1, pp. 26-34, Dec. 2013 (doi: 10.1109/JESTPE.2013.2295061).
[24] I. Jlassi, F. Bento, A.J.M. Cardoso, "Fault-Tolerant PMSG direct-drive wind turbines, using vector control techniques with reduced DC-link ratings", Proceeding of the IEEE/IECON, Washington, DC, USA, Oct. 2018 (doi: 10.1109/IECON.2018.8592698).
[25] D. Zhou, J. Zhao, Y. Li, "Model-predictive control scheme of five-leg AC–DC–AC converter-fed induction motor drive", IEEE Trans. on Industrial Electronics, vol. 63, no. 7, pp. 4517-4526, Mar. 2016 (doi: 10.1109/TIE.2016.2541618).
[26] M. Shahbazi, P. Poure, S. Saadate, M.R. Zolghadri, "FPGA-based reconfigurable control for fault-tolerant back-to-back converter without redundancy", IEEE Trans. on Industrial Electronics, vol. 60, no. 8, pp. 3360-3371, Aug. 2013 (doi: 10.1109/TIE.2012.2200214).
[27] M. Hamouda, H.F. Blanchette, K. Al-Haddad, "A hybrid modulation scheme for dual-output five-leg indirect matrix converter", IEEE Trans. on Industrial Electronics, vol. 63, no. 12, pp. 7299-7309, Dec. 2016 (doi: 10.1109/TIE.2016.2594038).
[28] W. Wang, J. Zhang, M. Cheng, "A dual-level hysteresis current control for one five-leg VSI to control two PMSMs", IEEE Trans. on Power Electronics, vol. 32, no. 1, pp. 804-816, Jan. 2017 (doi: 10.1109/T­PEL.2­016.2535294).
[29] C.S. Lim, N.A. Rahim, W.P. Hew, E. Levi, "Model predictive control of a two-motor drive with five-leg-inverter supply", IEEE Trans. on Industrial Electronics, vol. 60, no. 1, pp. 54-56, Jan. 2013 (doi: 10.110­9/TIE­.2012.2186770).
[30] C.S. Lim, E. Levi, N.A. Rahim, W.P. Hew, "A comparative study of synchronous current control schemes based on FCS-MPC and PI-PWM for a two-motor three-phase drive", IEEE Trans. on Industrial Electro­nics , vol. 61, no. 8, pp. 3867-3878, Aug. 2014 (doi: 10.1109/TIE.2013.2286573).
[31] C.S. Lim, E. Levi, N.A. Rahim, W.P. Hew, "A fault-tolerant two-motor drive with FCS-MP-based flux and torque control", IEEE Trans. on Industrial Electronics, vol. 61, no. 12, pp. 6603-6614, Dec. 2014 (doi: 10.1109/TIE.2014.2317135).
[32] W.S. Im, J.J. Moon, J.M. Kim, D.C. Lee, K.B. Lee, "Fault tolerant control strategy of 3-phase AC-DC PWM converter under multiple open-switch faults conditions", Proceeding of the IEEE/APEC, pp. 789-795, Orlando, FL, USA, Mar. 2012 (doi: 10.1109/APEC.2012.6165909).
[33] R. Bolbolnia, E. Heydari, K. Abbaszadeh, "Fault tolerant control in direct-drive PMSG wind turbine systems under open-circuit faults", Proceeding of the IEEE/PEDSTC, pp. 1-5, Tehran, Iran, May 2020 (doi: 10.1109/PEDSTC49159.2020.9088401).
[34] F. Blaabjerg, "Control of power electronic converters and systems", In Plastics, 1st Edition, vol. 2, Elsevier, pp. 43-47, 2018.
[35] E.A.R.E. Ariff, O. Dordevic, M. Jones, "A space vector PWM technique for a three-level symmetrical six-phase drive", IEEE Trans. on Industrial Electronics, vol. 64, no. 11, pp. 8396-8405, Nov. 2017 (doi: 10.110­9­/T­IE.2017.2703668).