روش حفاظت هماهنگ بر مبنای کنترل امپدانس مجازی برای ریزشبکه‌های حلقوی

نوع مقاله : پژوهشی

نویسندگان

1 دانشکده مهندسی برق- واحد نجف آباد، دانشگاه آزاد اسلامی، نجف آباد، ایران

2 مرکز تحقیقات ریز شبکه های هوشمند- واحد نجف آباد، دانشگاه آزاد اسلامی، نجف آباد، ایران

چکیده

حضور منابع تولید پراکنده اینورتری در سیستم‌های قدرت در مقابل مزایای متعدد آن، می‌تواند باعث ایجاد عدم هماهنگی در عملکرد سیستم حفاظتی گردد. در این مقاله یک راه‌ کار مناسب، مستقل از تنظیمات رله‌ها، به منظور حل مشکلات حفاظتی ریزشبکه‌های جزیره‌ای اینورتری با آرایش حلقوی ارائه گردیده است. حضور منابع تولید پراکنده اینورتری، تغییر جهت و دامنه‌ی جریان خطا در سطح ریزشبکه را موجب می‌شود. این مساله در ریزشبکه‌ها با آرایش حلقوی بیشتر به چشم می‌خورد. بنابراین طرح‌های حفاظتی متداول که یک مسیر واحد و یک سطح جریان خطای بالا را در مقایسه با جریان بار در نظر می‌گیرند، ممکن است دچار مشکل ‌شوند. یک عامل مهم برای طراحی مناسب یک سیستم حفاظتی برای ریزشبکه‌ها، سهم جریان خطای تزریقی منابع اینورتری است. در این مقاله استراتژی حفاظت بر مبنای کنترل اینورتر منابع ارائه می‌گردد و از رله‌های اضافه جریان معمولی با منحنی مشخصه‌ی یکسان استفاده شده است. هنگامی که یک خطای اتصال کوتاه در ریزشبکه رخ دهد، یک استراتژی محدود کننده جریان وفقی با استفاده از حلقه امپدانس مجازی اعمال می-گردد. در این حالت سهم جریان خطای هر منبع با توجه به موقعیت خطا کنترل می‌شود و منابع نزدیکتر به خطا جریان خطای بزرگتری تولید می‌کنند. بنابراین جریان عبوری از تجهیزات حفاظتی نزدیکتر به خطا بیشتر از سایر تجهیزات موجود در ریزشبکه می‌شود و بدون نیاز به برقراری ارتباط بین تجهیزات حفاظتی هماهنگی حفاظتی تضمین می‌شود.

تازه های تحقیق

- یک راه‌ کار مناسب، مستقل از تنظیمات رله‌ها برای ریزشبکه‌های جزیره‌ای اینورتری با آرایش حلقوی ارائه گردیده است.

- استراتژی حفاظت بر مبنای کنترل اینورتر منابع ارائه شده و از رله‌های اضافه جریان معمولی استفاده شده است.

- سهم جریان خطای هر منبع با توجه به موقعیت خطا کنترل می‌شود و منابع نزدیکتر به خطا جریان خطای بزرگتری تولید می‌کنند.

- هماهنگی حفاظتی بدون نیاز به برقراری ارتباط بین تجهیزات حفاظتی تضمین می‌شود.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Coordinated Protection Scheme Based on Virtual Impedance Control for Loop-Based Microgrids

نویسندگان [English]

  • Hamed Karimi 1
  • Bahador Fani 1
  • Ghazanfar Shahgholian 2
1 Department of Electrical Engineering- Najafabad Branch, Islamic Azad University, Najafabad, Iran
2 Smart Microgrid Research Center- Najafabad Branch, Islamic Azad University, Najafabad, Iran
چکیده [English]

The presence of the inverter distributed generations in the power systems can bring about incoordination in the protection system performance while enjoying various advantages. In this paper, a suitable solution, independent of relay settings, is presented in order to solve the protection problems of inverter island microgrids with circular arrangement. The presence of distributed inverter generation sources causes a change in the direction and amplitude of the fault current at the microgrid level. This problem is more visible in microgrids with circular arrangement. Therefore, conventional protection schemes that consider a single path and a high fault current level compared to load current may be problematic. An important factor for the proper design of a protective system for microgrids is the contribution of the injecting fault current of the inverter sources. In this paper, a protection strategy based on the inverter control of sources is presented and ordinary overcurrent relays with the same characteristic curve are used. When a short circuit fault occurs in the microgrid, an adaptive current limiting strategy is applied using the virtual impedance loop. In this case, the share of fault current of each source is controlled according to the position of the fault, and sources closer to the fault produce a larger fault current. Therefore, the current passing through the protective equipment is closer to the fault than other equipment in the micro grid. And without the need for making connection between protective equipment, the protective coordination is guaranteed.

کلیدواژه‌ها [English]

  • loop microgrid
  • distributed generation
  • protective coordination
  • overcurrent relay
  • virtual impedance

Citation: H. Karimi, B. Fani, G. Shahgholian, "Coordinated protection scheme based on virtual impedance control for loop-based microgrids", Journal of Intelligent Procedures in Electrical Technology, vol. 12, no. 46, pp. 15-32, September 2021 (DOR: 20.1001.1.23223871.1400.12.2.2.0) (in Persian).

[1]    M. Salari, F. Haghighatdar-Fesharaki, “Optimal placement and sizing of distributed generations and capacitors for reliability improvement and power loss minimization in distribution networks”, Journal of Intelligent Procedures in Electrical Technology, vol. 11, no. 43, pp. 83-94, Autumn 2020..
[2]    G. Shahgholian, Z. Azimi, "Analysis and design of a DSTATCOM based on sliding mode control strategy for imp­r­o­­vement of voltage sag in distribution systems", Elect­ron­i­c­s­, vol. 5, no. 3, pp. 1-12, 2016  (doi: 10.­3­3­90/e­lectronIcs 5030041).
[3]    W. Huang, N. Zhang, J. Yang, Y. Wang, C. Kang, "Optimal configuration planning of multi-energy systems considering distributed renewable energy", IEEE Trans. on Smart Grid, vol. 10, no. 2, pp. 1452-1464, March 2019 (doi: 10.1109/TSG.2017.2767860).
[4]    G. Shahgholian, "Analysis and simulation of dynamic pe­rfo­rmance for DFIG-based wind farm connected to a di­st­ru­­­­bition system", Energy Equipment and Systems, vol. 6, no. 2, pp. 117-130, June 2018 (doi: 10.22­0­59­/E­­ES.2018. 315 31).
[5]    S. Yang, P. Wang, Y. Tang, L. Zhang, "Explicit phase lead filter design in repetitive control for voltage harmonic mitigation of VSI-based islanded microgrids", IEEE Trans. on Industrial Electronics, vol. 64, no. 1, pp. 817-826, Jan. 2017 (doi: 10.1109/TIE.2016.2570199).
[6]    J. Faiz, G. Shahgholian, M. Ehsan, “Stability analysis and simulation of a single‐phase voltage source UPS inverter with two‐stage cascade output filter”, European Transactions on Electrical Power, vol. 18, no. 1, pp. 29-49, Jan. 2008 (doi: 10.1002/etep.160).
[7]    R. Kolluri, I. Mareels, T. Alpcan, M. Brazil, J. Hoog, D. Thomas, “Power sharing in angle droop controlled microgrids”, IEEE Trans. on Power Systems, vol. 32, no. 6, pp. 4743-4751, Nov. 2017 (doi: 10.1109/TP­W­R­S.2­017.2672569).
[8]    B. Keyvani-Boroujeni, G. Shahgholian,  B. Fani, "A distributed secondary control approach for inverter-dominated microgrids with application to avoiding bifurcation-triggered instabilities", IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 8, no. 4, pp. 3361-3371, Dec. 2020 (doi: 10.1109/JESTPE.2020.2974756). 
[9]    B. Fani, M. Dadkhah, A. Karami, “Adaptive protection coordination scheme against the staircase fault current waveforms in PV-dominated distribution systems”, IET Generation, Transmission and Distribution,  vol.12, no. 9, May 2018 (doi: 10.1049/iet-gtd.2017.0586).
[10] B. Khajeh-Shalaly, G. Shahgholian, “A multi-slope sliding-mode control approach for single-phase inverters under different loads”, Electronics, vol. 5, no. 4, Oct. 2016 (doi: .org/10.33­90/el­­ectronics5040068).
[11] S. D. Kermany, M. Joorabian, S. Deilami, M. A. S. Masoum, "Hybrid islanding detection in microgrid with multiple connection points to smart grids using fuzzy-neural network", IEEE Trans. on Power Systems, vol. 32, no. 4, pp. 2640-2651, July 2017 (doi: 10.1109/TPWRS.2016.2617344).
[12] H. Pan, Q. Teng, D. Wu, "MESO-based robustness voltage sliding mode control for AC islanded microgrid", Chinese Journal of Electrical Engineering, vol. 6, no. 2, pp. 83-93, June 2020 (doi: 10.23919/CJ­EE.2­020.0­00013).
[13]   D. E. Olivares, A. Mehrizi-Sani, A. H. Etemadi, C. A. Canizares, R. Iravani, M. Kazerani, A. H. Hajimiragha, O. Gomis-Bellmunt, M. Saeedifard, R. Palma-Behnke, G. A. Jiménez-Estévez, N. D. Hatzia­rgy­riou, “Trends in microgrid control”, IEEE Trans. on Smart Grid, Vol. 5, No. 4, pp. 1905-1919, July 2014 (doi: 10.1109/TSG.2013.2295514).
[14] S. Zamanian, S. Sadi, R. Ghaffarpour, A. Mahdavian, “Inverter-based microgrid dynamic stability analysis considering inventory of dynamic and static load models”, Journal of Intelligent Procedures in Electrical Technology, vol. 11, no. 44, pp. 91-109, Winter 2021 (in Persian).
[15] Y. C. C. Wong, C. S. Lim, M. D. Rotaru, A. Cruden, X. Kong, "Consensus virtual output impedance control based on the novel droop equivalent impedance concept for a multi-bus radial microgrid", IEEE Trans. on Energy Conversion, vol. 35, no. 2, pp. 1078-1087, June 2020 (doi: 10.1109/TEC.2020.2972002).
[16] L. Che, X. Zhang, M. Shahidehpour, A. Alabdulwahab, Y. Al-Turki, "Optimal planning of loop-based microgrid topology", IEEE Trans. on Smart Grid, vol. 8, no. 4, pp. 1771-1781, July 2017 (doi: 10.1109/TSG.2015.2508058).
[17] L. Xindong, M. Shahidehpour, “Protection scheme for loop-based microgrid”, IEEE Trans. on Smart Grid, Vol. 8, No. 3, pp. 1340-1349, May 2017 (doi: 10.1109/TSG.2016.2626791).
[18] S. Gorji, S. Zamanian, M. Moazzami, “Techno-economic and environmental base approach for optimal energy management of microgrids using crow search algorithm”, Journal of Intelligent Procedures in Electrical Technology, vol. 11, no. 43, pp. 49-68, Autumn 2020 (in Persian).
[19] F. Mumtaz, I. S. Bayram, “Planning, operation, and protection of microgrids: An overview”, Energy Procedia, vol. 107, pp. 94-100, Feb. 2017 (doi: 10.1016/j.egypro.2016.12.137).
[20] P. T. Manditereza, R. C. Bansal, “Protection of microgrids using voltage-based power differential and sensitivity analysis”, International Journal of Electrical Power and Energy Systems, vol. 118, Article Number: 105756, June 2020 (doi: 10.1016/j.ijepes.2019.105756).
[21] M. A. Redfern, H. Al-Nasseri, “Protection of micro-grids dominated by distributed generation using solid state converters”, Proceeding of the IEEE/DPSP, pp. 670–674, Glasgow, UK, Mar. 2008 (doi: 10.10­49­/cp:20080119).
[22] N. Villamagna, P. A. Crossley, "A CT saturation detection algorithm using symmetrical components for current differential protection", IEEE Trans. on Power Delivery, vol. 21, no. 1, pp. 38-45, Jan. 2006 (doi: 10.1109/TPWRD.2005.848654).
[23] P. A. Venikar, M. S. Ballal, B. S. Umre, H. M. Suryawanshi, "Symmetrical components based advanced scheme for detection of incipient inter-turn fault in transformer", Proceeding of the IEEE/CATCON, pp. 127-132, Bangalore, India, Dec. 2015 (doi: 10.1109/CATCON.2015.7449521).
[24]  H. Nikkhajoei, R. H. Lasseter, “Microgrid fault protection based on symmetrical and differential current components”, Public Interest Energy Research, California Energy Commission, Dec. 2006.
[25] S. Kar, S.R. Samantaray, “Time-frequency transform-based differential scheme for microgrid protection”, IET Generation, Transmission and Distribution, vol. 8, no. 2, pp. 310-320, Feb. 2014 (doi: 10.1­04­­9/iet-gtd.2013.0180).
[26] S. R. Samantaray, G. Joos, I. Kamwa, “Differential energy based microgrid protection against fault conditions”, Proceeding of the IEEE/ ISGT, Washington, DC, USA, Jan. 2012 (doi: 10.1109/ISGT.2012­.61­75­532).
[27] W. Huang, T. Nengling, X. Zheng, C. Fan, X. Yang, B. J. Kirby, "An impedance protection scheme for feeders of active distribution networks", IEEE Trans. on Power Delivery, vol. 29, no. 4, pp. 1591-1602, Aug. 2014 (doi: 10.1109/TPWRD.2014.2322866).
[28] E. Casagrande, W. L. Woon, H. H. Zeineldin, D. Svetinovic, “A differential sequence component protection scheme for microgrids with inverter-based distributed generators”, IEEE Trans. Smart grid, vol. 5, no. 1, pp. 29-37, Jan. 2014 (doi: 10.1109/TSG.2013.2251017).
[29] N. Yadav, N. R. Tummuru, "A real-time resistance based fault detection technique for zonal type low-voltage dc microgrid applications", IEEE Trans. on Industry Applications, vol. 56, no. 6, pp. 6815-6824, Nov.-Dec. 2020 (doi: 10.1109/TIA.2020.3017564).
[30] R. Bhargav, B. R. Bhalja, C. P. Gupta, "Novel fault detection and localization algorithm for low-voltage dc microgrid", IEEE Trans. on Industrial Informatics, vol. 16, no. 7, pp. 4498-4511, July 2020 (doi: 10.1109/TII.2019.2942426).
[31] W. Huang, T. Nengling, X.Zheng, C. Fan, X. Yang, B. J. Kirby,”An impedance protection scheme for feeders of active distribution networks”, IEEE Trans. on Power Delivery,vol. 29, no. 4, pp. 1591-1602, Aug. 2014 (doi: 10.1109/TPWRD.2014.2322866).
[32] S. Voima, K. Kauhaniemi, “Using Distance protection in smart grid environment”, Proceeding of the IEEE/ ISGT, Istanbul, Turkey, pp. 1-6, Oct. 2014 (doi: 10.1109/ISGTEurope.2014.7028904).
[33] H. F. Habib, C. R. Lashway, O. A. Mohammed, "A review of communication failure impacts on adaptive microgrid protection schemes and the use of energy storage as a contingency", IEEE Trans. on Industry Applications, vol. 54, no. 2, pp. 1194-1207, March-April 2018 (doi: 10.1109/TIA.2017.2776858).
[34] O. V. Gnana Swathika, S. Hemamalini, "Prims-aided dijkstra algorithm for adaptive protection in microg­ri­d­s", IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 4, no. 4, pp. 1279-1286, Dec. 2016 (doi: 10.1109/JESTPE.2016.2581986).
[35] A. Oudalav, A. Fidigatti, “Adaptive network protection in microgrids”, International Journal of Distributed Energy Resources, vol. 5, pp. 201-225, 2009.
[36] T. S. Ustun, C. Ozansoy, A. Zayegh, "A microgrid protection system with central protection unit and extensive communication", Proceeding of the IEEE/EEELC, pp. 1-4, Rome, Italy, May 2011 (doi: 10.1109/EEEIC.2011.5874777).
[37] S. M. Brahma, A. A. Girgis, "Development of adaptive protection scheme for distribution systems with high penetration of distributed generation", IEEE Trans. on Power Delivery, vol. 19, no. 1, pp. 56-63, Jan. 2004 (doi: 10.1109/TPWRD.2003.820204).
[38] Y. Han, X. Hu, D. Zhang, "Study of adaptive fault current algorithm for microgrid dominated by inverter based distributed generators", Proceeding of the IEEE/PEDG, pp. 852-854, Hefei, China, June 2010 (doi: 10.1109/PEDG.2010.5545889).
[39] H. Lin, K. Sun, Z.H. Tan, C. Liu, J. M. Guerrero, J. C. Vasquez, “Adaptive protection combined with machine learning for microgrids”, IET Generation, Transmission and Distribution, vol. 13, no. 6, pp.770–779, 2019 (doi: 10.1049/iet-gtd.2018.6230).
[40] M. S. Rahman, T. Orchi, S. Saha, M. E. Haque, "Cooperative multiagent based distributed power sharing strategy in low-voltage microgrids", IEEE Trans. on Industry Applications, vol. 56, no. 4, pp. 3285-3296, July-Aug. 2020 (doi: 10.1109/TIA.2020.2986449).
[41] H. S. V. S. K. Nunna, A. Sesetti, A. K. Rathore, S. Doolla, "Multiagent-based energy trading platform for energy storage systems in distribution systems with interconnected microgrids", IEEE Trans. on Industry Applications, vol. 56, no. 3, pp. 3207-3217, May-June 2020 (doi: 10.1109/TIA.2020.2979782).
[42] A. Zidan, E. F. El-Saadany, "A cooperative multiagent framework for self-healing mechanisms in distribution systems", IEEE Trans. on Smart Grid, vol. 3, no. 3, pp. 1525-1539, Sept. 2012 (doi: 10.1109/TSG.2012.2198247).
[43] E. Abbaspour, B. Fani, E. Heydarian-Forushani, “A bi-level multi agent based protection scheme for distribution networks with distributed generation”, International Journal of Electrical Power and Energy Systems, vol. 112, pp. 209–220, Nov. 2019 (doi: 10.1016/j.ijepes.2019.05.001).
[44] B. Fani, H. Bisheh, “Local penetration-free control approach against numerous changes in PV generation level in MAS-based protection schemes”, IET Renewable Power Generation, vol. 13, no. 7, pp. 1197–1204, 2019 (doi:10.1049/iet-rpg.2018.6083).
[45] B. Fani, E. Abbaspour, A. Karami-Horestani, “A fault-clearing algorithm supporting the MAS-based protection schemes”, International Journal of Electrical Power & Energy Systems, vol. 103, pp. 257–266, Dec. 2018 (doi: 10.1016/j.ijepes.2018.06.001).
[46] M. H. Cintuglu, T. Ma, O. A. Mohammed, "Protection of autonomous microgrids using agent-based distributed communication", IEEE Trans. on Power Delivery, vol. 32, no. 1, pp. 351-360, Feb. 2017 (doi: 10.1109/TPWRD.2016.2551368).
[47] Z. Liu, C. Su, H. K. Høidalen, Z. Chen, "A multiagent system-based protection and control scheme for distribution system with distributed-generation integration", IEEE Trans. on Power Delivery, vol. 32, no. 1, pp. 536-545, Feb. 2017 (doi: 10.1109/TPWRD.2016.2585579).
[48] W. K. A. Najy, H. H. Zeineldin, W. L. Woon, "Optimal protection coordination for microgrids with grid-connected and islanded capability", IEEE Trans. on Industrial Electronics, vol. 60, no. 4, pp. 1668-1677, April 2013 (doi: 10.1109/TIE.2012.2192893).
[49] B. Nathaniel, G.  Timothy , “Comparison of current limiting strategies during fault ride-through of inverters to prevent latch-up and wind-up”, IEEE Trans. on Power Electronics, vol. 29, no. 7, pp. 3786-3797, July 2014 (doi:  10.1109/TPEL.2013.2279162).
[50] I. Sadeghkhani, M. E. Hamedani-Golshan, J. M. Guerrero, A. Mehrizi-Sani, “A current limiting strategy to improve fault ride-through of inverter interfaced autonomous microgrids”,  IEEE Trans. on Smart Grid, Vol. 8, No. 5, pp. 2318-2148, Sept. 2017 (doi: 10.1109/TSG.2016.2517201).