بررسی پایداری دینامیکی ریزشبکه‌ی اینورتری با در نظر گرفتن مجموعه‌ی بارهای دینامیکی و استاتیکی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشکده مهندسی و پدافند غیرعامل، دانشگاه امام حسین، تهران، ایران

2 دانشکده مهندسی مکانیک بیو سیستم، دانشگاه تربیت مدرس، تهران، ایران

3 دانشکده برق، دانشگاه اراک، اراک، ایران

چکیده

عملکرد مناسب و پایدار هر سیستم الکتریکی تا حد زیادی مرتبط با شناخت طراحان از ماهیت آن سیستم است؛ بنابراین لزوم ارائه­ی مدلی دقیق و مبتنی بر رفتار واقعی سیستم از اهمیت فوق­العاده­ای برخوردار است. درزمینه‌ی ریزشبکه­های اینورتری با توجه به نبود گشتاور همگام­ساز کافی فرآیند طراحی باید با حداکثر دقت انجام پذیرد. به این منظور ابتدا باید مدل دینامیکی کاملی از ریزشبکه به­ دست آورد. یکی از مهم­ترین بخش­های ریزشبکه­های اینورتری بخش بار است، به این دلیل که رفتار بار در خروجی بخش تولید توان، بر تمامی ارکان سیستم تأثیرگذار است؛ بنابراین تمرکز مقاله­ی حاضر بر بررسی تأثیر مدل­سازی بار در فرآیند طراحی سیستم خواهد بود.
ابتدا با ارائه­ی معادلات اجزای ریزشبکه مدل فضای حالت آن به‌دست‌ آمده و در حضور مدل بار استاتیکی پایداری سیستم بررسی خواهد شد. سپس با قرار دادن مجموعه­ی بارهای مدل دینامیکی بازیابی نمایی و استاتیکی چندجمله­ای، صحت نتایج حاصل از طراحی مبتنی بر مدل استاتیکی مورد تحقیق قرار می‌گیرد. در این مسیر روش مکان ریشه­ها و مشاهده­ی عملکرد ریزشبکه معیار پایداری سیستم خواهد بود. به‌منظور دست­یابی به اهداف پایدارسازی و بهبود عملکرد سیستم، ضرایب مشارکت متغیرهای حالت استخراج و پارامترهای تأثیرگذار مورد مطالعه قرار خواهند گرفت.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Inverter-based microgrid dynamic stability analysis considering inventory of dynamic and static load models

نویسندگان [English]

  • Saeid Zamanian 1
  • Sajad Sadi 2
  • Reza Ghaffarpour 1
  • Aram Mahdavian 3
1 Department of Engineering and defense, Imam Hossein University, Tehran, Iran
2 Department of Biosystems Engineering, Tarbiat modares university, Tehran, Iran
3 Department of Engineering, Arak University, Arak, Iran
چکیده [English]

The proper and sustainable performance of any electrical system is mainly related to the designers' insight into the nature of that system. Therefore, the need to provide an accurate model based on the actual behavior of the system has considerable importance. In the case of inverter-based microgrid, due to the lack of sufficient synchronizing torque, the design process must be carried out with the utmost precision. In this paper, the stability of the inverter-based microgrid will be studied. First by presenting the equations of the microgrid components its state-space model is obtained and in the presence of the static load model the stability of the system will be investigated. Then, by placing the inventory of dynamic exponential recovery and static polynomial load models, the results of the static model-based design are investigated. In this study, the measure of system stability will be eigenvalue plots and system performance. In order to achieve system stability and performance improvement, the state variables participation factors extracted and the effective parameters will be studied

کلیدواژه‌ها [English]

  • Microgrid
  • Dynamic stability
  • dynamic load model
  • exponential recovery load model
  • polynomial load model
[1]   M. Granovskii, I. Dincer, M. A. Rosen, "Air pollution reduction via use of green energy sources for elect­ri­ci­ty and hydrogen production”, Atmospheric Environment, vol. 41, no. 8, pp. 1777-1783, March 2007 (doi: 10.1­0­16/j.atmosenv.2006.10.023).
[2]   IEEE standard for the specification of microgrid controllers”, IEEE Std 2030.7-2017, pp.1-43, 23 April 2018 (doi: 10.1109/IEEESTD.2018.8340204).
[3]   N. Bottrell, M. Prodanovic, T. C. Green, "Dynamic stability of a microgrid with an active load”, IEEE Trans. on Power Electronics, vol. 28, no. 11, pp. 5107-5119, 2013 (doi: 10.1109/TPEL.2013.2241455).
[4]   L. Herrera, E. Inoa, F. Guo, J. Wang, H. Tang, "Small-signal modeling and networked control of a PHEV charging facility”, IEEE Trans. on Industry Applications, vol. 50, no. 2, pp. 1121-1130, March/April 2014 (doi: 10.1109/TIA.2013.2272912).
[5]   L. Herrera, W. Zhang, J. Wang, "Stability analysis and controller design of DC microgrids with constant power loads”, IEEE Trans. on Smart Grid, vol. 8, no. 2, pp. 881-888, March 2017 (doi: 10.1109/TSG.2015.­2457­909).
[6]   E. Hossain, R. Perez, A. Nasiri, R. Bayindir, "Stability improvement of microgrids in the presence of constant power loads”, International Journal of Electrical Power and Energy Systems, vol. 96, pp. 442-456, March 2018 (doi: 10.1016/j.ijepes.2017.10.016).
[7]   T. Jain, "A t wo-level hierarchical controller to enhance stability and dynamic performance of islanded inverter-based microgrids with static and dynamic loads”, IEEE Trans. on Industrial Informatics, Sep 2018 (doi: 10.1109/TII.2018.2869983).
[8]   L. Che, M. E. Khodayar, M. Shahidehpour, "Adaptive protection system for microgrids: Protection practices of a functional microgrid system", IEEE Electrification Magazine, vol. 2, no. 1, pp. 66-80, March 2014 (doi: 10.1109/MELE.2013.2297031).
[9]   H. J. Song, X. Liu, D. Jakobsen, R. Bhagwan, X. Zhang, K. Taura, A. Chien, "The microgrid: a scientific tool for modeling computational grids", Proceeding of the IEEE/ACM, pp. 53-53, Dallas, TX, USA, USA, Nov 2000 (doi: 10.1109/SC.2000.10028).
[10] X. Chen, W. Pei, X. Tang, "Transient stability analyses of micro-grids with multiple distributed generations", Proceeding of the IEEE/POWERCON, pp. 1-8,  Hangzhou, China, Oct. 2010 (doi: 10.1109/­PO­WE­RCON.2010.5666120).
[11] Q. Jin ,Y.-L. Li, "A study on steady characters of inverter interfaced distributed generation in three phase symmetrical system”, Proceeding of the IEEE/POWERCON, pp. 1-7, Hangzhou, China, Oct.  2010 (doi: 10.1109/POWERCON.2010.5666669).
[12] K. Yu, Q. Ai, S. Wang, J. Ni, and T. Lv, "Analysis and optimization of droop controller for microgrid syste­m based on small-signal dynamic model”, IEEE Trans. Smart Grid, vol. 7, no. 2, pp. 695-705, Nov 2016 (doi: 10.1109/TSG.2015.2501316).
[13] Z. Shuai et al., "Microgrid stability: Classification and a review”, Renewable and Sustainable Energy Reviews, vol. 58, pp. 167-179, May  2016 (doi: 10.1016/j.rser.2015.12.201).
[14] E. A. A. Coelho, P. C. Cortizo, P. F. D. Garcia, "Small-signal stability for parallel-connected inverters in stand-alone AC supply systems”, IEEE Trans. on Industry Applications, vol. 38, no. 2, pp. 533-542, Aug 2002 (doi: 10.1109/28.993176).
[15] A. Arif, Z. Wang, J. Wang, B. Mather, H. Bashualdo, D. Zhao, "Load modeling–a review”, IEEE Trans. on Smart Grid, May  2017  (doi: 10.1109/TSG.2017.2700436).
[16] C. W. Taylor, Power system voltage stability. McGraw-Hill, 1994.
[17] P. Kundur, N. J. Balu, M. G. Lauby, Power system stability and control. McGraw-hill New York, 1994.
[18] D. J. Hill, "Nonlinear dynamic load models with recovery for voltage stability studies”, IEEE Trans. on power systems, vol. 8, no. 1, pp. 166-176, Feb 1993 (doi: 10.1109/59.221270).
[19] D. Karlsson, D. J. Hill, "Modelling and identification of nonlinear dynamic loads in power systems”, IEEE Trans. on Power Systems, vol. 9, no. 1, pp. 157-166, Feb. 1994 (doi:  10.1109/59.221270).
[20] L. Rodríguez-García, S. Pérez-Londoño, J. Mora-Flórez, "Measurement-based exponential recovery load model: Development and validation”, Dyna, vol. 82, no. 192, pp. 131-140, Aug 2015 (doi: 10.15446/dyn­a.v­8­2n­192.48588).
[21] R. Agrawal, D. Changan, A. Bodhe, "Small signal stability analysis of stand-alone microgrid with compo­sit­e load”, Journal of Electrical Systems and Information Technology, vol. 7, no. 1, pp. 1-20, Dec. 2020 (doi: 10.1186/s43067-020-00020-9).
[22] J. Ma, D. Han, R.-M. He, Z.-Y. Dong, D. J. Hill, "Reducing identified parameters of measurement-based composite load model”, IEEE Trans. on Power Systems, vol. 23, no. 1, pp. 76-83, Jan  2008 (doi: 10.11­0­9­/T­P­WRS.2007.913206).
[23] W. Price et al., "Load representation for dynamic performance analysis”, IEEE Trans. on Power Systems, vol. 8, no. 2, pp. 472-482, May 1993 (doi: 10.1109/59.260837).
[24] A. Kahrobaeian, Y. A.-R. I. Mohamed, "Analysis and mitigation of low-frequency instabilities in autonom­o­u­s medium-voltage converter-based microgrids with dynamic loads”, IEEE Trans. on Industrial Electronics, vol. 61, no. 4, pp. 1643-1658, May  2014 (doi: 10.1109/TIE.2013.2264790).
[25] P. Raju, T. Jain, "Development and validation of a generalized modeling approach for islanded inverter-based microgrids with static and dynamic loads”, International Journal of Electrical Power and Energy Systems, vol. 108, pp. 177-190, June  2019 (doi: 10.1016/j.ijepes.2019.01.002).
[26] Y. Peng, Z. Shuai, X. Liu, Z. Li, J. M. Guerrero, Z. J. Shen, "Modeling and stability analysis of inverter-based microgrid under harmonic conditions”, IEEE Trans. on Smart Grid, Aug  2019 (doi: 10.1109/TSG.2­0­1­9.2­936041).
[27] Z. Shuai, Y. Peng, J. M. Guerrero, Y. Li, Z. J. Shen, "Transient response analysis of inverter-based microgrids under unbalanced conditions using a dynamic phasor model”, IEEE Trans. on Industrial Electronics, vol. 66, no. 4, pp. 2868-2879, 2018 (doi: 10.1109/TIE.2018.2844828).
[28] A. M. I. Mohamad, Y. A.-R. I. Mohamed, "Investigation and assessment of stabilization solutions for DC microgrid with dynamic loads”, IEEE Trans. on Smart Grid, Jun  2019 (doi: 10.1109/TSG.2019.2890817).
[29] Z. Shuai, Y. Peng, X. Liu, Z. Li, J. M. Guerrero, J. Shen, "Parameter stability region analysis of islanded microgrid based on bifurcation theory”, IEEE Trans. on Smart Grid, Mar  2019 (doi: 10.1109/TSG.2019­.29­0­7600).
[30] N. Pogaku, M. Prodanovic, T. C. Green, "Modeling, analysis and testing of autonomous operation of an inverter-based microgrid”, IEEE Trans. on power electronics, vol. 22, no. 2, pp. 613-625, Mar 2007 (doi:  10.1109/TPEL.2006.890003).