طراحی بهینه، مدلسازی و بررسی عملکرد موتور القایی تک فاز شار محوری خازن دائم با استفاده از الگوریتم بهینه سازی تجمع ذرات بهبود یافته (IPSO)

نوع مقاله : مقاله پژوهشی

نویسنده

گروه مهندسی برق دانشگاه اصفهان

چکیده

کاربرد روز افزون موتورهای القایی تکفاز شار محوری خازن دائم و بازده پایین آنها، باعث اهمیت مساله بهینه­سازی این نوع موتورها گردیده است. در این مقاله، ضمن معرفی اصول الگوریتم­های کلاسیک طراحی این نوع موتورها که شامل یافتن ابعاد قسمت­های مختلف موتور و محاسبه پارامترهای الکتریکی مانند مقاومت­ها و راکتانس­ها و خازن است، با معرفی مدار معادل پیشنهادی در حالت دائمی به­منظور کاهش فاصله هوایی موتور، به‌معرفی ساختار الگوریتم­های بهینه­سازی پرداخته و در ادامه از الگوریتم­های بهینه­سازی ژنتیک و تجمع ذرات بهبودیافته در راستای بهینه­سازی طراحی موتور شار محوری جهت افزایش بازده، افزایش ضریب توان و کاهش حجم هسته استفاده می­شود. بدین منظور یک موتور القایی تک فاز شار محوری با خازن دائم که کاربرد قابل توجهی در سیستم­های تهویه دارد، انتخاب شده، مورد بررسی عملکردی قرار گرفته و با استفاده از فرمول­های طراحی و به‌کمک مدار معادل حالت دائمی پیشنهادی و همچنین با استفاده از روش­های هوشمند نظیر الگوریتم ژنتیک و تجمع ذرات بهبودیافته، بهینه­سازی موتور جهت افزایش حداکثری بازده صورت گرفته و نتایج آن در قالب نمودارهای گشتاور- سرعت و بازده- سرعت رسم و با‌ یکدیگر مقایسه شده است. در پایان موتور طراحی شده به روش اجزای محدود جهت تایید الگوریتم طراحی، مدل حالت دائمی، الگوریتم بهینه­سازی پیشنهادی و نتایج آزمایش­ها شبیه­سازی شده است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Optimal Design, Modeling, and Evaluation of Single-Phase Axial Flux Induction Motor with a Permanent Capacitor Using Improved Particle Swarm Optimization Algorithm (IPSO)

نویسنده [English]

  • Amin Aboutalebi Najafabadi
Department of Electrical Engineering, University of Isfahan, Isfahan, Iran
چکیده [English]

The increasing application of single-phase axial flux induction motors with a permanent capacitor and their low efficiency has led to the importance of optimization of this type of motors. In this paper, by introducing the classical algorithms of design of this type of motors, which consists of finding the dimensions of different parts of the motor and calculation of electrical parameters such as resistance and reactance, and capacitor, by introducing the proposed equivalent circuit in the permanent state to reduce the air gap of the motor, introduces the structure of optimization algorithms and then uses a genetic algorithm and improved particle swarm algorithm to optimize the design of the axial flux motor to increase efficiency, increase power factor and reduce core volume. For this purpose, a single-phase axial flux induction motor with a permanent capacitor that has considerable application in ventilation systems is investigated, and using design formulas and with the help of a circuit equivalent to the proposed permanent state, as well as using Intelligent methods such as genetic algorithm and improved particle swarm algorithm, engine optimization to increase maximum efficiency and the results are drawn in the form of torque-speed and efficiency-speed diagrams and compared with each other. Finally, the designed motor is simulated by the finite element method to verify the design algorithm, the steady-state model, the proposed optimization algorithm, and the test results.

کلیدواژه‌ها [English]

  • Optimization algorithm
  • improve particle swarm optimization algorithm
  • Finite Element Method
  • continuous mode functional model
  • single-phase axial flux induction motor
[1]    Z. Nasiri-Gheidari, H. Lesani, “A survey on axial flux induction motors”, Electrical Review, pp. 300-305, Feb. 2012.
[2]    R Wallace, L Mopan, G. Cea, F. Perez, “Design and construction of medium power axial flux induction motors”, Proceeding of the IEEE/ICEMD, no. 341, pp. 260-265, London, UK, Sept. 1991.
[3]    Z. Nasiri-Gheidari, H. Lesani , “Optimal design of adjustable air-gap, two-speed, capacitor-run, single-phase axial flux induction motors”, IEEE Trans. on energy conversion, vol. 28, no. 3, Sept. 2013 (doi: 10.1109/TEC.2013.2260826).
[4]    F. Tootoonchian, Z. Nasiri-Gheidari, H. Lesani, “Design, analysis, and implementation of extra low air-gap single-phase axial-flux induction motors for low-cost applications”, International Transactions on Electrical Energy Systems, vol. 26, no. 12, pp. 2516-2531, Sec. 2016 (doi: 10.1002/etep.2217).
[5]    P. Neelima, C. Manjeera, V.R. Babu, “Modelling of axial flux induction machines and it application as differential in electrical vehicles”, International Journal of Innovative Research in Advanced Engineering, vol. 1, no. 12, pp. 1-10, Dec. 2014.
[6]    S. M. Mirimani, A. Vahedi, F. Marignetti, “Effect of inclined static eccentricity fault in single stator-single rotor axial flux permanent magnet machines”, IEEE Trans. on Magnetics, vol. 48, no. 1, pp. 143-148, Jan. 2012 (doi: 10.1109/TMAG.2011.2161876).
[7]    J. D. Bisschop, P. Sergeant, A. Hemeida, L. Dupre, “Analytical model for combined study of magnet demagnetization and eccentricity defects in axial flux permanent magnet synchronous machines”, IEEE Trans. on Magnetics, vol. 53, no. 9, May. 2017 (doi: 10.1109/TMAG.2017.2709267).
[8]    M. Gulec, E. Yolacan, M. Aydin, “Design, analysis and real time dynamic torque control of single-rotor-single-stator axial flux eddy current brake”, IET Electric Power Applications, vol. 10, no. 9, pp. 869-876, Oct. 2016 (doi: 10.1049/iet-epa.2016.0022).
[9]    P. Hekmati, R. Yazdanpanah, M. Mirsalim, “Design and analysis of double-sided slotless axial-flux permanent magnet machines with conventional and new stator core”, IET Electric Power Applications, vol. 9, no. 3, pp. 193-202, Mar. 2015 (doi: 10.1049/iet-epa.2014.0216).
[10] A. Nobahari, A. Darabi, A. Hassannia, “Axial flux induction motor, design and evaluation of steady state modeling using equivalent circuit”, Proceeding of the IEEE/PEDSTC, pp. 353-358, Mashhad, Iran, Feb. 2017 (doi: 10.1109/PEDSTC.2017.7910351).
[11] D. K. Banchhor, A. Dhabale, “Design, modeling, and analysis of dual rotor axial flux induction motor”, Proceeding of the IEEE/PEDES, Chennai, India, Dec. 2018 (doi: 10.1109/PEDES.2018.8707644).
[12] J. Mei, C. H. T. Lee, J. L. Kirtley, “Design of axial flux induction motor with reduced back iron for electric vehicles”, IEEE Trans. on Vehicular Technology, vol. 69, no. 1, pp. 293-301, Jan. 2020 (doi: 10.1109/TV­T­.2­0­19.2954084).
[13] C. Hong, W. Huang,  Z. Hu, “Parameters and performance analysis of a dual stator composite rotor axial flux induction motor by an analytical method”, IET Electric Power Applications, vol. 12, no. 8, pp. 1158-1165, Sept. 2018 (doi: 10.1049/iet-epa.2017.0786).
[14] C. Hong, W. Huang, Z. Hu, “Calculation methods of equivalent circuit parameters for a dual stator solid rotor axial flux induction motor”, IET Renewable Power Generation, vol. 12, no. 16, pp. 1977-1983, Oct. 2018 (doi: 10.1049/iet-rpg.2018.5103).
[15] C. Hong, W. Huang, Z. Hu, “Design and analysis of a high-speed dual stator slotted solid rotor axial flux induction motor”, IEEE Trans. on Transportation Electrification, vol. 5, no. 1, pp. 71-79, Mar. 2019 (doi: 10.­110­9/TTE.2018.2880301).
[16] C. Hong, W. Huang, Z. Hu, “Performance calculation of a dual stator solid rotor axial flux induction motor using the multi-slice and multi-layer method”, IEEE Trans. on Magnetics, vol. 55, no. 2, pp. 1-9, Feb. 2019 (doi: 10.1109/TMAG.2018.2872457).
[17] S. Kahourzade, A. Mahmoudi, R. Ravji, W. L. Soong, “Line-start axial-flux PM motors: introduction of a new machine topology”, Proceeding of the IEEE/ECCE, pp. 7027-7034, Baltimore, MD, USA, Oct. 2019 (doi: 10.1109/ECCE.2019.8912992).
[18] B. Dianati, S. Kahourzade, A. Mahmoudi, “Analytical design of axial-flux induction motors”, Proceeding of the IEEE/VPPC, Hanoi, Vietnam, Oct. 2019 (doi: 10.1109/VPPC46532.2019.8952172).
[19] B. Dianati, S. Kahourzade, A. Mahmoudi, “Axial-flux induction motors for electric vehicles”, Proceeding of the IEEE/VPPC, Hanoi, Vietnam, Oct. 2019  (doi: 10.1109/VPPC46532.2019.8952278).
[20] B. Dianati, S. Kahourzade, A. Mahmoudi, “Optimization of axial-flux induction motors for the application of electric vehicles considering driving cycles”, IEEE Trans. on Energy Conversion, vol. 35, no. 3, pp. 1522-1533, Sept. 2020 (doi: 10.1109/TEC.2020.2976625).
[21] M. V. Deshpande, “Design & testing electrical machine”, Phi Learning, 2th Edition, New Delhi: Wheeler Pub, 2010.
[22] L .Xinzheng, S. Shaoping, C. Dunli, “Integrated cad software for axial flux induction machines”, Proc­ee­di­n­g of the IEEE/ICEMS, pp. 1136-1139, Shenyang, China, Aug. 2001 (doi: 10.1109/ICEM­S.20­01.971879).
[23] C. C. Chan, ”Axial-field electrical machines-design and applications”, IEEE Trans. on energy conversion, vol.2, no.2, pp.294-300, June 1987 (doi: 10.1109/TEC.1987.4765844).
[24] M. Ashari, H. Suryoatmojo, D. Candara R., R. Mardiyanto, D. Fahmi, K. B. Adam, S. Hidayat, ”Design and implementation of axial flux induction motor single stator-single rotor for electric vehicle application”, Iptek Journal of Proceeding Series, vol. 1, no.1, pp. 497-502, 2014 (doi: 10.12962/j23546026.y2014i1.250).
[25] S. Huang, J. Luo, F. Leonardi, T. A. Lipo, ”A comparison of power density for axial flux machines based on general purpose sizing equations”, IEEE Trans. on Energy Conversion, vol. 14, no. 2, pp. 185-192, June 1999 (doi: 10.1109/60.766982).
[26] I. Boldea, S. A. Nasar, ” The induction machines design handbook”,  2th Edition, Boca Raton, FL: CRC press/Ta­ylor & Francis, eBook Published, Sept. 2018 (doi: 10.1201/9781315222592).
[27] Vtu Learning Course ,”Design of induction motors”, [Online] Available: http://www.dokumen.tips.
[28] V. N. Mittle, A. Mittal, ”Design of electrical machines”, 4th Edition, New Delhi: Standard Publishers Distributors, 1996.
[29] Z .Nasiri-Gheidari, H. Lesani, “Theoretical modeling of axial flux squirrel cage induction motor considering both saturation and anisotropy”, International Trans. on Electrical Energy Systems, vol. 24, no. 3, pp. 335-346, Sept. 2012 (doi: 10.1002/etep.1691).
[30] D. P. Kothari , I. J. Nagrath, “Electric machines”, 4th Edition, New Delhi: Tata Mcgraw-Hill, Education Private Limited, 2010.
[31] A. Raie , V. Rashtchi, “Accurate identification of parameters, in winding function model of induction motor, using genetic algoritm”, Proceeding of the IEEE/SICE, pp. 2430-2434, Osaka, Japan, Aug. 2002 (doi: 10.­11­­09/SICE.2002.1195791).
[32] F. Khajeh-khalili, M.A. Honarvar, “Design and simulation of a wilkinson power divider with high isolation for tri-band operation using PSO algorithm”, Journal of Intelligent Procedures in Electrical Technology, vol. 6, no. 23, pp. 13-20, Autumn 2015 (in Persian).
[33] K. Khani, G. Shahgholian, “Analysis and optimization of frequency control in isolated microgrid with double-fed induction-generators based wind turbine”, Journal of International Council on Electrical Engineering, vol. 9, no. 1, pp. 24–37, Feb. 2019 (doi: 10.1080/22348972.2018.1564547).
[34] M. Momeni, S. Gharravi, F. Hourali, “Reducing the impact of SYN flood attacks by improving the accuracy of the PSO algorithm by adaptive effective filters”, Journal of Intelligent Procedures in Electrical Technology, vol. 10, no. 37, pp. 51-57, Spring 2019 (in Persian).