نوع مقاله : پژوهشی

نویسندگان

گروه پژوهشی فناوری اطلاعات و ارتباطات- پژوهشگاه نیرو، تهران، ایران

چکیده

در سال­های اخیر، توجه به انرژی­های تجدیدپذیر و تولید پراکنده به دلیل افزایش تقاضای انرژی و آلودگی­های زیست­ محیطی، افزایش یافته است. به همین علت در ساختار جدید شبکه قدرت، مصرف­کنندگان می­توانند نقش تولیدکننده هم داشته باشند. با توجه به این­که تعداد تولید/مصرف­کنندگان در این ساختار بسیار بیشتر از شبکه های قدرت سنتی است، نیاز به بستری امن، شفاف، سریع و مقیاس­پذیر برای تبادلات انرژی به شدت احساس می­شود. فناوری بلاکچین با توجه به خصوصیات منحصربفردش می­تواند چنین بستری را فراهم کند. با این­که پلتفرم­های مبتنی بر بلاکچین زیادی در کشورهای مختلف در حوزه انرژی ارائه شده است، اما در ایران چنین پلتفرمی وجود ندارد. بنابراین هدف اصلی این مقاله طراحی و پیاده­سازی پایلوت پلتفرم بومی مبادله انرژی همتا به همتای مبتنی بر بلاکچین با در نظر گرفتن شرایط خاص شبکه برق ایران است. معماری کلان پلتفرم براساس مفهوم حداقل محصول قابل عرضه (MVP) با درنظر گرفتن نیازهای عملکردی و غیرعملکردی در قالب نمودارهای زبان مدل­سازی یکپارچه (UML) طراحی شده است. پایلوت پلتفرم پیشنهادی در قالب 4 عنصر اصلی شامل قرارداد هوشمند، رابط کاربری، پلتفرم بلاکچین، پایگاه داده بلاکچینی و غیربلاکچینی پیاده­سازی شده و با استفاده از سناریوهای مختلف مورد ارزیابی و آزمون قرار گرفته است. این آزمون­ها عمدتاً شامل آزمون واحد و آزمون یک­پارچگی هستند که با موفقیت بر روی پلتفرم انجام شده­اند. این پلتفرم برای اولین بار در کشور مطابق با پروتکل اتریوم و بر مبنای معماری میکروسرویس طراحی و پیاده­سازی شده است. این پلتفرم علاوه بر امکان ادغام با سامانه­های مبتنی بر اتریوم، به واسطه طراحی ماژولار دارای قابلیت توسعه­پذیری است.

چکیده تصویری

طراحی و پیاده سازی پلتفرم بومی مبادله انرژی همتا به همتای مبتنی بر بلاکچین

تازه های تحقیق

- پلتفرم بومی مبادله انرژی همتا به همتای مبتنی بر بلاکچین برای اولین بار در کشور مطابق با پروتکل اتریوم و بر مبنای معماری میکروسرویس طراحی و پیاده­سازی شده است.

- معماری کلان پلتفرم براساس مفهوم حداقل محصول قابل عرضه با درنظر گرفتن نیازهای عملکردی و غیرعملکردی طراحی شده است.

- پلتفرم بومی ارائه شده با درنظر گرفتن شرایط خاص شبکه برق ایران طراحی و پیاده­سازی شده است.

- پلتفرم بومی ارائه شده علاوه بر سازگاری با ساختار جدید شبکه قدرت، به واسطه طراحی ماژولار دارای قابلیت توسعه­پذیری است.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Design and Implementation of a Local Blockchain-based Peer-to-Peer Energy Exchange Platform

نویسندگان [English]

  • Mohammad Reza Jabbarpour
  • Alimohammad Saghiri

Information and Communications Technology Research Department, Niroo Research Institute, Tehran, Iran

چکیده [English]

In recent years, attention to renewable energy and distributed generation has increased due to increased energy demand and environmental pollution. To this end, in the new power grid structure, consumers can also play a producer role. Considering that the number of prosumers in this structure is much more than traditional power networks, the need for a secure, transparent, fast, scalable platform for energy exchanges has greatly increased. Blockchain technology can provide such a platform due to its unique properties. Although there are many blockchain-based platforms in different countries in enregy field, but in Iran there is no such platform. Therefore, the main purpose of this paper is to design and implement a local pilot platform for peer-to-peer blockchain-based energy exchange, taking into account the specific conditions of Iran's electricity grid. The macro platform architecture is designed based on the concept of Minimum Viable Product (MVP) considering functional and non-functional requirements in the form of unified modeling language (UML) diagrams. The proposed platform pilot has been implemented in the form of 4 main elements including smart contract, user interface, blockchain platform, and blockchain and non-blockchain databases and has been evaluated and tested using different scenarios. These tests mainly include the unit test and the integrity test, which were successfully performed on the platform. This platform has been designed and implemented for the first time in Iran in accordance with the Ethereum protocol and based on microservice architecture. In addition to the ability to integrate with Ethereum-based systems, this platform is scalable due to its modular design.

کلیدواژه‌ها [English]

  • Blockchain
  • Energy Token
  • Energy management
  • Peer-to-Peer Energy Exchange
  • Power Industry
  • Renewable Energy
  • Smart Contract

Citation: M.R. Jabbarpour, A. Saghiri, "Design and implementation of a local blockchain-based peer-to-peer energy exchange platform", Journal of Intelligent Procedures in Electrical Technology, vol. 14, no. 56, pp. 1-26, June 2024 (in Persian).

[1]   M. Abbasi, M. Nafar, M. Simab, "Management and control of microgrids connected to three-phase network with the approach of activating current limitation under unbalanced errors using fuzzy intelligent method with the presence of battery, wind, photovoltaic and diesel sources", Journal of Intelligent Procedures in Electrical Technology, vol. 13, no. 49, pp. 59-71, June 2022 (dor: 20.1001.1.23223­871.14­01.13.49.4.3).
[2]   P. Wongthongtham, D. Marrable, B. Abu-Salih, X. Liu, G. Morrison, "Blockchain-enabled peer-to-peer energy trading", Computers Electrical Engineering, vol. 94, pp. 1-13, Sept. 2021 (doi: 10.1016/j.compelece­ng.2­021.107299).
[3]   M. Pichler, M. Meisel, A. Goranovic, K. Leonhartsberger, G. Lettner, G. Chasparis, H. Vallant, S. Marksteiner, H. Bieser, "Decentralized energy networks based on blockchain: background, overview and concept discussion", Proceeding of the ICBIS, pp. 244-257, Berlin, Germany, Jan. 2018 (doi: 10.1007/978-3-030-04849-5_22).
[4]   C L.Y. Sarah, P. Saiteja, H.Y. Ping, "Blockchain industries, regulations and policies in singapore", Asian Research Policy, vol. 9, no. 2, pp. 83-98, Dec. 2018.
[5]   Y. Wu, Y. Wu, H. Cimen, J.C. Vasquez, J.M. Guerrero, "P2P energy trading: Blockchain-enabled P2P energy society with multi-scale flexibility services", Energy Reports, vol. 8, pp. 3614-3628, Nov. 2022 (doi: 10.1016/j.egyr.2022.02.074).
[6]   W. Mougayar, "The business blockchain: promise, practice, and application of the next internet technology", John Wiley & Sons, pp. 1-208, May 2016 (ISBN: 978-1-119-30031-1).
[7]   S.M.H. Bamakan, A. Motavali, A.B. Bondarti, "A survey of blockchain consensus algorithms performance evaluation criteria", Expert Systems with Applications, vol. 154, pp. 1-39, Sept. 2020 (doi: 10.1016/j.es­wa.2­020.113385).
[8]   M.R. Jabbarpour, M. Zahir, S. Seyedfarshi, F. Sedighi, "Introduction to blockchain technology in power industry", 1st Edition. Niroo Research Inistitute, pp. 1-260, 2021 (in Persian) (ISBN: 978-622-98001-5-7).
[9]   R. Colomo‐Palacios, M. Sánchez‐Gordón, D. Arias‐Aranda, "A critical review on blockchain assessment initiatives: A technology evolution viewpoint", Journal of Software: Evolution and Process, vol. 32, no. 11, pp. 1-11, May 2020 (doi: 10.1002/smr.2272).
[10] B. Waltl, C. Sillaber, U. Gallersdörfer, F. Matthes, "Blockchains and smart contracts: a threat for the legal industry?", Business Transformation through Blockchain, vol. 2, pp. 287-315, Dec. 2018 (doi: 10.1007/978-3-319-99058-3_11).
[11] C.D. Clack, "Smart Contract Templates: legal semantics and code validation", Journal of Digital Banking, vol. 2, no. 4, pp. 338-352, May 2018.
[12] A. Savelyev, "Contract law 2.0:‘Smart’contracts as the beginning of the end of classic contract law", Information communications technology law, vol. 26, no. 2, pp. 116-134, April 2017 (doi: 0.1080/136­008­34.2­­017.1301036).
[13] R.M. Parizi, A. Dehghantanha, "Smart contract programming languages on blockchains: An empirical evaluation of usability and security", Proceeding of the ICB, pp. 75-91, Seattle, WA, USA, June 2018 (doi: 10.1­007/978-3-319-94478-4_6).
[14] S. Tikhomirov, E. Voskresenskaya, I. Ivanitskiy, R. Takhaviev, E. Marchenko, Y. Alexandrov, "Smartch­e­c­k: Static analysis of ethereum smart contracts", Proceedings of the IWETSEB, pp. 9-16, Gothenburg, Sweden, May 2018 (doi: 10.1145/3194113.3194115).
[15] E. Mengelkamp, J. Gärttner, K. Rock, S. Kessler, L. Orsini, C. Weinhardt, "Designing microgrid energy markets: a case study: the Brooklyn microgrid", Applied Energy, vol. 210, pp. 870-880, Jan. 2018 (doi: 10.1016/j.apenergy.2017.06.054).
[16] Y. Kim, K. Kim, J. Kim, "Power trading blockchain using hyperledger fabric", Proceeding of the IEEE/ICOIN, pp. 821-824, Barcelona, Spain, Jan. 2020 (doi: 10.1109/ICOIN48656.2020.9016428).
[17] C. Liu, X. Zhang, K.K. Chai, J. Loo, Y. Chen, "A survey on blockchain-enabled smart grids: Advances, applications and challenges", IET Smart Cities, vol. 3, no. 2, pp. 56-78, May 2021 (doi: 10.1049/sm­c2.1­2010).
[18] M. Botticelli, F. Moretti, S. Pizzuti, S. Romano, "Challenges and opportunities of Blockchain technology in the energy sector", Proceeding of the IEEE/AEIT, pp. 1-6, Catania, Italy, Sept. 2020 (doi: 10.23919/AEI­T501­78.202­0.9241119).
[19] S.A. Chacra, Y. Sireli, U. Cali, "A review of worldwide blockchain technology initiatives in the energy sector based on go-to-market strategies", International Journal of Energy Sector Management, vol. 15, no. 6, pp. 1050-1065, Nov. 2021 (doi: 10.1108/IJESM-05-2019-0001).
[20] M.R. Jabbarpour, M. Zahir Joozdani, S. Seyedfarshi, "Blockchain applications in power industry", Proceeding of the IEEE/ICEE, pp. 1-5, Tabriz, Iran, Nov. 2020 (doi: 10.1109/ICEE50131.2020.9260690).
[21] Y. Akın, C. Dikkollu, B.B. Kaplan, U. Yayan, E.N. Yolaçan, "Ethereum blockchain network-based electrical vehicle charging platform with multi-criteria decision support system", Proceeding of the IEEE/UBMYK, pp. 1-5, Ankara, Turkey, Nov. 2019 (doi: 10.1109/UBMYK48245.2019.8965557).
[22] Y. Tian, R.E. Minchin, K. Chung, J. Woo, P. Adriaens, "Towards inclusive and sustainable infrastructure development through blockchain-enabled asset tokenization: An exploratory case study", Proceeding of the CCC, vol. 1218, pp. 1-6, Budapest, Hungary, June 2021 (doi: 10.1088/1757-899X/1218/1/012040).
[23] M. Foti, M. Vavalis, "What blockchain can do for power grids?", Blockchain: Research and Applications, vol. 2, no. 1, pp. 1-14, Mar. 2021 (doi: 10.1016/j.bcra.2021.100008).
[24] M. Andoni, V. Robu, D. Flynn, S. Abram, D. Geach, D. Jenkins, P. McCallum, A. Peacock, "Blockchain technology in the energy sector: a systematic review of challenges and opportunities", Renewable and Sustainable Energy Reviews, vol. 100, pp. 143-174, Feb. 2019 (doi: 10.1016/j.rser.2018.10.014).
[25] I. El-Sayed, K. Khan, X. Dominguez, P. Arboleya, "A real pilot-platform implementation for blockchain-based peer-to-peer energy trading", Proceeding of the IEEE/PESGM, pp. 1-5, Montreal, Canada, Aug. 2020 (doi: 10.1109/PESGM41954.2020.9281855).
[26] M. Khorasany, Y. Mishra, G. Ledwich, "Market framework for local energy trading: a review of potential designs and market clearing approaches", IET Generation, Transmission and Distribution, vol. 12, no. 22, pp. 5899-5908, Nov. 2018 (doi: 10.1049/iet-gtd.2018.5309)
[27] N.A.M. Kajaan, Z. Salam, R.Z.R.M. Radzi, "Review of market clearing method for blockchain-based P2P energy trading in microgrid", Proceeding of the IEEE/CENCON, pp. 202-207, Johor Bahru, Malaysia, Oct. 2021 (doi: 10.1109/CENCON51869.2021.9627254).
[28] S.V. Oprea, A. Bâra, A.L. Andreescu, "Two novel blockchain-based market settlement mechanisms embedded into smart contracts for securely trading renewable energy", IEEE Access, vol. 8, pp. 212548-212556, Nov. 2020 (doi: 10.1109/ACCESS.2020.3040764).
[29] F. Sadeghi, A. Avokh, "Load‐balanced data gathering in Internet of Things using an energy‐aware cuckoo‐search algorithm", International Journal of Communication Systems, vol. 33, no. 9, pp. 1-19, June 2020 (doi: 10.1002/dac.4385).
[30] A. Esmat, M. de Vos, Y. Ghiassi-Farrokhfal, P. Palensky, D. Epema, "A novel decentralized platform for peer-to-peer energy trading market with blockchain technology", Applied Energy, vol. 282, pp. 1-16, Jan. 2021 (doi: 10.1016/j.apenergy.2020.116123).
[31] S. Wilker, M. Meisel, E. Piatkowska, T. Sauter, O. Jung, "Smart grid reference architecture, an approach on a secure and model-driven implementation", Proceeding of the IEEE/ISIE, pp. 74-79, Cairns, QLD, Australia, June 2018 (doi: 10.1109/ISIE.2018.8433754).
[32] D. Kirli, B. Couraud, V. Robu, M. Salgado-Bravo, S. Norbu, M. Andoni, I. Antonopoulos, M. Negrete-Pincetic, D. Flynn, A. Kiprakis, "Smart contracts in energy systems: A systematic review of fundamental approaches and implementations", Renewable and Sustainable Energy Reviews, vol. 158, pp. 1-28, April 2022 (doi: 10.1016/j.rser.2021.112013).
[33] R. Taş, Ö.Ö. Tanrıöver, "Building a decentralized application on the Ethereum blockchain", Proceeding of the ISMSIT, pp. 1-4, Ankara, Turkey, Oct. 2019 (doi: 10.1109/ISMSIT.2019.8932806).
[34] S. Bragagnolo, H. Rocha, M. Denker, S. Ducasse, "SmartInspect: solidity smart contract inspector", Pr­oceeding of the IWBOSE, pp. 9-18, Campobasso, Italy, Mar. 2018 (doi: 10.1109/IWBOSE.2018.­8327­56­6).
[35] R.M.A. Latif, K. Hussain, N.Z. Jhanjhi, A. Nayyar, O. Rizwan, "A remix IDE: smart contract-based fram­ework for the healthcare sector by using blockchain technology", Multimedia Tools and Applications, pp. 1-24, Nov. 2020 (doi: 10.1007/s11042-020-10087-1).
[36] H. Hasanshahi, M. Nafar, M. Simab, "Operation of micro-grid for provide clean energy constrained to system optimal reliability", Journal of Intelligent Procedures in Electrical Technology, vol. 13, no. 50, pp. 141-156, Sept. 2022 (dor: 20.1001.1.23223871.1401.13.50.9.0).
[37] M.R. Momeni, F. Haghighat, M. Haghighat, "An efficient cloud based architecture to improve smart grid performance", Journal of Intelligent Procedures in Electrical Technology, vol. 10, no. 39, pp. 45-52, Nov. 2019 (dor: 20.1001.1.23223871.1398.10.39.5.3).