رویکردی جدید در طراحی سطوح انتخابگر فرکانس چند لایه بر پایه تنظیم قطب- صفرهای تک‌تک صفحات

نوع مقاله: مقاله پژوهشی

نویسندگان

دانشکده مهندسی برق، دانشگاه علم و صنعت ایران، تهران، ایران

چکیده

در این مقاله یک رویکرد جدید برای طراحی سطوح انتخابگر فرکانس معرفی شده است. ما سعی می‌کنیم تا پاسخ فرکانسی مطلوب خود را با استفاده از تنظیم پاسخ فرکانسی هر سطح تشکیل‌دهنده، بسازیم. همچنین در این مقاله یک سطح انتخابگر فرکانس مینیاتوری دو بانده پیشنهاد شده است. در مقایسه با تکنیک‌های طراحی سنتی ساختار ارائه شده دارای مزیت غیر رزونانسی بودن عناصر سلول واحد، با ابعاد مینیاتوری می‌باشد. سلول‌های FSS پیشنهادی از دو سطح خازنی و سلفی تشکیل شده است که مانند یک فیلتر دو بانده در مقابل عبور امواج الکترومغناطیسی عمل می‌کند. عملکرد این ساختار برای زوایای مختلف تابش و پلاریزاسیون پایدار می‌باشد

کلیدواژه‌ها


عنوان مقاله [English]

A New Approach in Designing Multi-Layer Frequency Selective Surfaces based on Tuning Pole-Zeros of Individual Layers

نویسندگان [English]

  • Mahmoud Fallah
  • Ali Abdolali
Department of Electrical Engineering, Iran University of Science and Technology, Tehran, Iran
چکیده [English]

In this paper, a new approach (not new technique) is introduced for designing frequency selective surfaces (FSSs). We try to compose the desired frequency response using the frequency response of each constituent FSS. Also, a new dual-band miniaturized frequency selective surface is proposed. In contrast to the conventional FSS design technique, the presented structure takes advantage of non-resonance elements and has unit cells with a miniaturized dimension. The proposed FSS cells are composed of two complex and inductive planes that act as a dual-band filter through the pass of electromagnetic wave propagation. The performance of this structure toward various angles of incident waves and different polarizations is stable.

کلیدواژه‌ها [English]

  • Frequency selective surface
  • Miniaturization
  • periodic structure
  • radome
[1] C.M. Watts, X. Liu, W.J. Padilla, "Metamaterial electromagnetic wave absorbers", Advanced Materials, Vol. 24, No. 23, pp. 98–120, May 2012.

[2] M. Li, M.A. Al Joumayly, N. Behdad, "Broadband true-time-delay microwave lenses based on miniaturized element frequency selective surfaces", IEEE, on Antennas and Propagation, Vol. 61, No. 3, Mar. 2013.

[3] X. Ma, G.-B. Wan, "Effcient multi-objective optimization of frequency selective radome with nonuniform wall thickness", Progress In Electromagnetics Research M, Vol. 35, 2014.

[4] K.L. Ford, J. Roberts, S. Zhou, G. Fong, J. Rigelsford, "Reconfigurable frequency selective surface for use in secure electromagnetic buildings", Electronics Letters 4th, Vol. 49, No.14, Jul. 2013.

[5] S.M. Hashemi, S.I. Tretyakov, M. Soleimani, C.R. Simovski, "Dual-polarized angularly stable high-impedance surface", IEEE Transactions on Antennas and Propagation, Vol. 61, No. 8, Aug. 2013.

[6] L.M. ZLopez, J.R. Cuevas, J.I.M. Lopez, A.E. Martynyuk, "A multilayer circular polarizer based on bisected split-ring frequency selective surfaces", IEEE Antennas and Wireless Propagation Letters, Vol. 13, 2014.

[7] S.M.A. Momeni-Hasanabadi, K. Ghaemi, N. Behdad, "Ultra-wideband, true-time-delay reflectarray antennas using ground-plane-backed, miniaturized-element frequency selective surfaces", IEEE Transactions on Antennas and Propagation, Vol. 63, No. 2, Feb. 2015.

[8] M. Wang, C. Huang, P. Chen, Y. Wang, Z. Zhao, X. Luo, "Controlling beamwidth of antenna using frequency selective surface superstrate", IEEE Antennas and Wireless Propagation Letters, Vol. 13, Jan. 2014.

[9] A. Pirhadi, H. Bahrami, J. Nasri, "Wideband high directive aperture coupled microstrip antenna design by using a FSS superstrate layer", IEEE Transactions on Antennas and Propagation, Vol. 60, No. 4, Apr. 2012.

[10] K. arabandi, N. Behdad, "A frequency selective surface with miniaturized elements", IEEE Transactions on Antennas and Propagation, Vol. 55, No. 5, May 2007.

[11] A.L.P.S. Campos, E.E.C.D. Oliveira, P.H.D. F.Silva, "Design of miniaturized frequency selective surfaces using minkowski island Fractal", Journal of Microwaves, Optoelectronics and Electromagnetic Applications, Vol. 9, No. 1, Jun. 2010.

[12] T. Zhng, G. Yang, W. Li, "A novel triangle spiral miniaturized frequency selective surface with stable performances", The International Conference on Information, Electronic and Computer Science, 2010.

[13] T. Zhang, G. Yang, W. Li, Q. Jiang, Q. Wu, "Research on novel miniaturized frequency selective surfaces consist of rectangle spiral-based elements", Global Mobile Congress (GMC), Shanghai, Oct. 2010.

[14] T. Zhang, G. Yang, W. Li, Q. Wu, "A novel miniaturized frequency selective surface with stable performances", IEEE International Conference on Communication Technology (ICCT), 12th., Nanjing, 2010.

[15] H. Zhou, S.B. Qu, B.Q. Lin, J.Q. Zhang, C. Gu, H. Ma, Z. Xu, P. Bai, W.D. Peng, "Dual band frequency selective surface based on circular aperture-coupled patches", Microwave And Optical Technology Letters, Vol. 53, No. 8, 2011.

[16] R.W. Davies, I.L. Morrow, J.F. Cooper, I. Youngs, "Frequency-selective surface composed of aperture-coupled high-impedance surfaces", Microwave and Optical Technology Letters, Vol. 48, No. 6, 2006.

[17] S. Zheng, Y. Yin, J. Fan, X. Yang, B. Li, W. Liu, "Analysis of miniature frequency selective surfaces based on fractal antenna–filter–antenna arrays", IEEE Antennas and Wireless Propagation Letters, Vol. 11, 2012.

[18] Z. Bayraktar, M.D. Gregory, X. Wang, D.H. Werner, "A versatile design strategy for thin composite planar double-sided High-impedance surfaces", IEEE Transactions on Antennas and Propagation, Vol. 60, No. 6, 2012.

[19] D.S. Weile, E. Michielssen, "The use of domain decomposition genetic algorithms exploiting model reduction for the design of frequency selective surfaces", Comput. Methods Appl. Mech. Engrg. Vol. 186, 2000.

[20] S. Chakravarty, R. Mittra, "Application of the micro-genetic algorithm to the design of spatial filters with frequency-selective surfaces embedded in dielectric media", IEEE Transactions on Electromagnetic Compatibility, Vol. 44, No. 2, 2002.

[21] A. Ray, M. Kahar, S. Biswas, D. Sarkar, P.P. Sarkar, "A dual tuned complementary structure frequency selective surface for wlan applications", Journal of Microwaves, Optoelectronics and Electromagnetic Applications, Vol. 11, No. 1, 2012.

[22] G.I. Kiani, K.HL. Ford, K.P. Esselle, A.R. Weily, C.J. Panagamuwa, "Oblique incidence performance of a novel frequency selective surface absorber", IEEE Transactions on Antennas and Propagation, Vol. 55, No. 10, 2007.

[23] Z. Hang, Q. Shao-Bo, P. Wei-Dong, L. Bao-Qin, W. Jia-Fu, M. Hua, Z. Jie-Qiu, B. Peng, W. Xu-Hua, X. Zhuo, "Dual-band frequency selective surface with large band separation and stable performance", Chin. Phys. B, Vol. 21, No. 5, 2012.

[24] M. Fallah, M.H. Vadjed-Samiei, "Designing aband-pass Fss based on an analytical approach using hexagonal patch-strip unit cell", Uemg, Electromagnetics, Vol. 35, No. 1, 2015.

[25] M. Fallah, M.H. Vadjed-Samiei, "Design of square patch-strip bandpass FSS using equivalent circuit model", Journal of Modeling in Engineering, Vol. 13, No. 40, 2015.

[26] "High Frequency Materials", Product Selector Guide, www.Rogerscorp.Com/Acm, 2010.

[27] D. Kim, J. Yeo, J. Choi, "Compact spatial triple-band-stop filter for cellular/PCS/IMT-2000 systems", ETRI Journal, Vol. 30, No. 5, Oct. 2008.