شناسایی سیستم غیرخطی چند متغیره مولد بخار نیروگاه با به کار بردن شبکه‌های عصبی تأخیر زمانی ویولت

نوع مقاله: مقاله پژوهشی

نویسندگان

1 کارشناس ارشد/دانشگاه آزاد اسلامی واحد نجف آباد

2 دانشیار/دانشگاه صنعتی اصفهان

3 استادیار/دانشگاه آزاد اسلامی واحد نجف آباد

چکیده

یکی از مؤثرترین راهکارها برای افزایش راندمان نیروگاه، بهبود سیستم کنترل آن است. برای چنین بهبودی داشتن مدل دقیقی از مولد بخار نیروگاه ضروری است. در این مقاله، یک مولد بخار صنعتی به عنوان یک سیستم غیرخطی چندمتغیره برای شناسایی در نظر گرفته می‌شود. یک گام مهم در شناسایی غیرخطی سیستم، گسترش دادن یک مدل غیرخطی است. در سال‌‌های اخیر، شبکه‌های عصبی مصنوعی به طور موفقیت آمیزی در شناسایی سیستم‌های غیرخطی در بسیاری از پژوهش‌ها به کار گرفته شده‌اند. شبکه‌های عصبی ویولت  نیز به‌عنوان یک ابزار قدرتمند در شناسایی غیرخطی سیستم به‌کار می‌روند. در این مقاله، برای شناسایی یک مولد بخار صنعتی یک مدل شبکه عصبی تأخیر زمانی و یک مدل شبکه عصبی ویولت ارائه می‌کنیم. نتایج شبیه سازی‌ها نشان دهنده کارایی مدل‌های ارائه شده در شناسایی سیستم مذکور می‌باشند و نشان می‌دهند مدل شبکه عصبی ویولت در تخمین خروجی‌های سیستم دقیق‌تر است.

کلیدواژه‌ها


عنوان مقاله [English]

System Identification of a Nonlinear Multivariable Steam Generator Power Plant Using Time Delay and Wavelet Neural Networks

نویسندگان [English]

  • Laila Khalilzadeh Ganjali-khani 1
  • Farid Sheikholeslam 2
  • Homayoun Mahdavi-Nasab 3
1 Ms.c /Najafabad Branch, Islamic Azad University
2 Associate Prof/Isfahan University of Technology
3 Assistant Professor/Najafabad Branch, Islamic Azad University
چکیده [English]

One of the most effective strategies for steam generator efficiency enhancement is to improve the control system. For such an improvement, it is essential to have an accurate model for the steam generator of power plant. In this paper, an industrial steam generator is considered as a nonlinear multivariable system for identification. An important step in nonlinear system identification is the development of a nonlinear model. In recent years, artificial neural networks have been successfully used for identification of nonlinear systems in many researches. Wavelet neural networks (WNNs) also are used as a powerful tool for nonlinear system identification. In this paper we present a time delay neural network model and a WNN model in order to identify an industrial steam generator. Simulation results show the effectiveness of the proposed models in the system identification and demonstrate that the WNN model is more precise to estimate the plant outputs.

کلیدواژه‌ها [English]

  • system identification
  • time delay neural network
  • Discrete Wavelet transform
  • Wavelet Neural Network