هماهنگی تولید واحدهای آبی تلمبهای-ذخیره‌های مزرعه بادی و تولید سنگ انرژی با توجه به رشد سالیانه بار

شاهرخ شجاعیان(1) - هادی اکرمی(2)

1) استادیار - دانشگاه مهندسی برق، دانشگاه آزاد اسلامی، واحد خمینیشهر
2) کارشناس ارشد - دانشگاه مهندسی برق، دانشگاه آزاد اسلامی، واحد خمینیشهر

تاريخ دریافت: 1391/2
تاريخ پذیرش: 1392/2

خلاصه: با توجه به روند افزایش مصرف انرژی الکتریکی و دماان‌پردازی ها، انرژی تجدیدپذیر و ذخیره‌کننده‌های ارزی، در این مقاله الگوریتمی انتخابی مبتنی بر قابلیت اطمینان بایر پرتابنده‌ی هماهنگ‌ان ها در سیستم‌های تجدیدپذیر و ذخیره‌کننده‌های بار ارائه شده است. برای محاسبه میزان توان بادی و ذخیره‌ساز ساز مورد نیاز با توجه به روند خروج تجدیدپذیر توان سنگی و رشد بار سالیانه، از شاخص قابلیت اطمینان استفاده شده است. برای این منظور محسوبه شده است. در این مقاله، توان بادی و ذخیره‌ساز در سال‌های مورد نیاز به بهبود روش برآورد بایر پرتابنده‌ی هماهنگ‌ان ها به کار رفته و سپس به کمک روش مونت کارلو در هر سال طوفان‌های فوق‌بادی شده‌اند. روش پیشنهادی بر روی شکیک قابلیت اطمینان مونت کارلو، Yabe-RTS، LEOL، کلکتی کلیدی: توان بادی، ذخیره‌ساز هیدروکنیترک، قابلیت اطمینان، مونت کارلو.

کلمات کلیدی: توان بادی، ذخیره‌ساز هیدروکنیترک، قابلیت اطمینان، مونت کارلو

1- مقدمه

نگاهی به روش محیطی ناشی از تولید انرژی الکتریکی از صنایع تولید سنتی به صورت محدوده‌های معیار سوخت‌فسیلی از قبل دلالت سنگین، نفت و گاز طبیعی و همچنین انرژی‌های زیست محیطی ناشی از استفاده این منابع قابل استفاده و توسعه تکنیک‌های تولید انرژی تجدیدپذیر را افزایش داده است. با خلاصه تکنیک‌های تولید انرژی تجدیدپذیر و روند شتاب‌ده‌کنندگی از این تکنیک‌ها به منظور تأمین توان مورد نیاز کشورها بررسی و ارزیابی توان این روش به سبب استمرار این منابع به شکل‌هایی که در انتهای آینده همراه با رشد و بهبود روش‌های تولید نقش داشته و به ویژه از این استفاده در سیستم‌های پیشرفته‌تر و کلاسیک‌تر است. مطالعات زراعی برای مدیریت رفع سیستم‌های پیشرفته است. این سیستم‌ها به منظور برآورد و نشاختگی قابلیت اطمینان سیستم‌های تبدیل انرژی‌های بادی و بی‌بادی به سیستم‌های تجدیدپذیر شکل‌گیری مقیاسی را که به درک هر نوع توان بادی کمک می‌کند. حالا است. این در حالی است که این روش‌های تولید تغییرات زمانی سرعت باد را به طور مکانیکی در یک مکان
شکل (1): دو-.LEE مدل دیویسیون ورود مدل

Fig. (1): Two-state model for a generating unit
 Persian
که در آن $\overline{\nu} = \text{مقدار سری زمانی در زمان 1 و به فاصله توزیع سفید با متوسط صفر و واریانس} \frac{9}{150} \mu$ می‌باشد. مدل سری زمانی فوق با ایجاد ارتباط بین سرعت باد در ساعت‌های متوالی یک تصویر منطقی از رژیم بادی فراهم می‌کند. با استفاده از مدل سری زمانی W سرعت بادی (SW) برای سایت فوق از رابطه (6) محاسبه می‌شود.

$$SW = m + \sigma _{y}$$

(6)

که در این رابطه m و $\sigma _{y}$ به ترتیب پیشینه متوسط و انحراف استاندارد سرعت بادی می‌باشد.

- 2- مدل زنترگرهای توربین بادی (WTG) سپری متقابل از توان خروجی زنترگرهای توربین بادی و ایجاده تولید بسته به جز موافقتی که دیجیکی قطبی و با خطاطی هستند یک توان خروجی تابعی را در تمام زمان‌ها ارائه دهند. یکی از متغیرهای پارامترهای و توان خروجی زنترگرهای توربین بادی سرعت بادی می‌باشد. یک رابطه غیر خطی بین توان خروجی زنترگرهای توربین بادی و سرعت باد وجود دارد گفته می‌شود که توان زندرخوری توربین بادی در ساختارهای 3 توان داده شده است.

$$y = \frac{\sum \phi _{i} + \alpha _{i} + \sum \theta _{i} \phi _{i}}{\sum \phi _{i} + \alpha _{i} + \sum \theta _{i} \phi _{i}}$$

(7)

در این آن $\eta (j = 1, 2, 3, ..., q) \phi _{i} (l = 1, 2, 3, ..., m) \alpha _{i}$ و $\theta _{i}$ برتوسی و r_{j} به ترتیب پارامترهای انتروپی واریانس و میانگین تغییرات (AR) و η به ترتیب تغییرات $\alpha _{i}$ می‌باشند. با استفاده از نمودار MEC و نمودار AEC و نمودار AEC مشابه نمودار $\alpha _{i}$ می‌باشد. با استفاده از نمودار $\alpha _{i}$ می‌باشد. با استفاده از
به محدودیتهای پایداری سیستم در شرایط ثابت تنها به خشی از توان مورد نیاز سیستم را می‌توان بیان کرد. این محدودیت در شرایط عمومی به سیستمی که درصدی از کل بار شکه به طور بیشتری بر هم نیاز داشته باشد، تأیید می‌گردد که مجموع توان باد و توان سنتی برای ایجاد کمپوزیت شده است. (11)

\[
A = \frac{1}{(V_v - V_n)^2} \left(V_v + V_n + V_w \right) \left(\frac{V_w + V_v}{2} \right)
\]

\[
B = \frac{1}{(V_v - V_n)^2} \left(V_v + V_n + V_w \right) \left(\frac{V_w + V_v}{2} \right)
\]

\[
C = \frac{1}{(V_v - V_n)^2} \left(V_v + V_n + V_w \right) \left(\frac{V_w + V_v}{2} \right)
\]

یکی از توابع C و B، A و C و B به بین‌رتبه بندی و شرایط بار و باد مربوط است. (12)

- 7- ارزیابی مدلهای قابلیت اطمینان سیستم‌های قدرت شال

در مدل اصلی از اضافه نمودن تجهیزات ذخیره‌سازی در سیستم‌های قدرت شال، مدل سیستم‌های قدرت شال به‌طور مستقل از سیستم‌های قدرت برق ارتباط دارند. در مدل‌های این سیستم، میزان ذخیره‌سازی در سیستم‌های قدرت شال به‌طور مستقل از سیستم‌های قدرت برقی ارتباط دارد. در مدل‌های این سیستم، میزان ذخیره‌سازی در سیستم‌های قدرت شال به‌طور مستقل از سیستم‌های قدرت برقی ارتباط دارد. در مدل‌های این سیستم، میزان ذخیره‌سازی در سیستم‌های قدرت شال به‌طور مستقل از سیستم‌های قدرت برقی ارتباط دارد. در مدل‌های این سیستم، میزان ذخیره‌سازی در سیستم‌های قدرت شال به‌طور مستقل از سیستم‌های قدرت برقی ارتباط دارد. در مدل‌های این سیستم، میزان ذخیره‌سازی در سیستم‌های قدرت شال به‌طور مستقل از سیستم‌های قدرت برقی ارتباط دارد. در مدل‌های این سیستم، میزان ذخیره‌سازی در سیستم‌های قدرت شال به‌طور مستقل از سیستم‌های قدرت برقی ارتباط دارد. در مدل‌های این سیستم، میزان ذخیره‌سازی در سیستم‌های قدرت شال به‌طور مستقل از سیستم‌های قدرت برقی ارتباط دارد. در مدل‌های این سیستم، میزان ذخیره‌سازی در سیستم‌های قدرت شال به‌طور مستقل از سیستم‌های قدرت برقی ارتباط دارد. در مدل‌های این سیستم، میزان ذخیره‌سازی در سیستم‌های قدرت شال به‌طور مستقل از سیستم‌های قدرت برقی ارتباط D

385
منظور از یک مدل معادله جریان - لازادوری استفاده شده است. در زمانی که کمیت تخلیه وارد نمی‌شود می‌توان به سمت معادله اصولی تر جریان پایین و توان تولید می‌گردد. در این مقاله راندمان حالت موثری و راندمان حالت نزدیک 1/3 فرض شده است. متغیرات فرضیت
شده برای این مصوبه و یا دوره در جدول (۲) مشاهده شده است.

8-1-۱-۱ مدل واحد برق آنژی محدود

توان خروجی از واحد‌های برق آبی با توجه به شرایط مخزن مشخص می‌شود. پاناسیون آنژی در مخزن به دست خود، و سیستم تویست آنژی به آنژیک مرحله کاری خروجی. به عنوان یک جریان بار مشخص در مخزن ورودی آنژی به‌طور عمدی به مخزن از سمت هپاتیک و پارس بان و بر فراز سیستم می‌باشد. سه مقادیر شرایط تویست در جدول (۱) آورده شده که در این مقاله ما از بسترین حالات ضمن پرداخته شکل می‌باشد.

استفاده نمو‌ایام.

Table 1: Mean value of water in-flow

<table>
<thead>
<tr>
<th>Period (Mm³)</th>
<th>Wet</th>
<th>Dry</th>
<th>Normal</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>20.5</td>
<td>12.0</td>
<td>12.5</td>
</tr>
<tr>
<td>2</td>
<td>34.0</td>
<td>14.5</td>
<td>19.5</td>
</tr>
<tr>
<td>3</td>
<td>46.0</td>
<td>23.5</td>
<td>30.0</td>
</tr>
<tr>
<td>4</td>
<td>57.0</td>
<td>29.0</td>
<td>42.0</td>
</tr>
<tr>
<td>5</td>
<td>31.0</td>
<td>14.0</td>
<td>20.0</td>
</tr>
<tr>
<td>6</td>
<td>24.0</td>
<td>11.0</td>
<td>16.0</td>
</tr>
<tr>
<td>7</td>
<td>18.0</td>
<td>8.0</td>
<td>12.0</td>
</tr>
<tr>
<td>8</td>
<td>12.0</td>
<td>5.0</td>
<td>8.0</td>
</tr>
<tr>
<td>9</td>
<td>12.0</td>
<td>5.0</td>
<td>8.0</td>
</tr>
<tr>
<td>10</td>
<td>12.0</td>
<td>4.0</td>
<td>7.0</td>
</tr>
<tr>
<td>11</td>
<td>18.0</td>
<td>8.0</td>
<td>10.0</td>
</tr>
<tr>
<td>12</td>
<td>18.0</td>
<td>10.0</td>
<td>16.0</td>
</tr>
<tr>
<td>13</td>
<td>28.0</td>
<td>12.0</td>
<td>18.0</td>
</tr>
</tbody>
</table>

Table 2: Hydro plant data

<table>
<thead>
<tr>
<th>جدول (2)</th>
<th>یاباده‌های نیازمند و همدیوبنی‌ها</th>
<th>ای</th>
<th>a</th>
<th>b</th>
<th>2</th>
<th>100</th>
<th>5</th>
<th>80</th>
<th>55</th>
<th>10.6</th>
<th>1.1</th>
</tr>
</thead>
<tbody>
<tr>
<td>ضرایب تابه‌ساز مخزن</td>
<td></td>
</tr>
<tr>
<td>0.00241</td>
<td>a</td>
<td>0.111</td>
<td>b</td>
<td>0.111</td>
<td>c</td>
<td>0.111</td>
<td>d</td>
<td>0.111</td>
<td>e</td>
<td>0.111</td>
<td>f</td>
</tr>
<tr>
<td>180</td>
<td>ماکزیمم دهانه آب</td>
<td></td>
</tr>
</tbody>
</table>

c = a + bH + cH²

که در آن a, b, c و d و e و f مختصات تابه‌ساز مخزن می‌باشد.

ملاحظه: که توان خروجی از واحد‌های ولید داخل سیستم از جمله حرارتی و توپوژنیک برای رایانه ای استفاده می‌شود. همگی این که توان خروجی مربوط به واحد‌های پایین‌ترین را از بدید که این توان به دست آمده. شرایط اللهب می‌باشد که توان خروجی دیگر از واحد‌های پایین‌ترین (مست و پایین‌ترین) را از رابطه

\[P_i = gH i \times 10^6 \]

\[Q_i = G \sqrt{\frac{2}{g}} \]

که در آن G تابه‌ساز ماکزیم (\(M \)) از جمله کلاسته‌گرایی Q, G

\[R_i = 3600 K_i Q \]

اطلاعات پایین‌ترین و موجود در جدول (۳) ارائه شده‌اند.

\[V_i = V_{i \text{max}} - R_i \times I \]

\[S_i = \begin{cases} 0 & \text{if } V_i < V_{i \text{max}} \\ V_i - V_{i \text{max}} & \text{if } V_i > V_{i \text{max}} \end{cases} \]
مشخص شد، میزان تولید تمامی واحد با هم جمع شده و مجموع
توان تولید واحدی سنتی (Cn) یا توان بادی حاصل از تولید
300 واحده 1 مگاواتی WTG جمع شده و برای محاسبه شاخص‌های قابلیت
اطمینان به قسمت مقایسه تحول داده شد. در قسمت مقایسه
مجموع نتایج سیستم (Cn+Cp) یا بر سیستم (L)
که مجموع تولید پاسخ‌گوی بار سیستم نخست، انتزی تامین نشده
محاسبه و شماره کد یک واحده بکار رفته است.
به مقدار سهم داده شده است. اضافه می‌نماید. برخی از أولین نتایج
قابلیت اطمینان مورد استفاده به همگرا شدن سیستم بررسی شد.
میزان تولید در تمامی مراحل به استفاده می‌شودLOLE
مراجع در مقالات می‌باشد. در شکل (6) یک نمونه از هرگزیا مونت
کارلو برای همگرايی شاخصLOLE
نتشان داده شده است.

![LOLE_index](image1)

شکل (6): فلورچارت کلی وحدتیLOLE

Fig. (5): Simulation flowchart

سپس این نتایج به روند برای سالانه ۵ درصد میزان شاخص
در هر مرحله حساب شده و به شاخص مرجع مقایسه می‌شود و تفویض
توان بادی و ذخیره ساز مورد نیاز محاسبه می‌گردد. یک گزینه از
که در سال پنج یکی از واحدهای ۴۰۰ مگاواتی و در سال هشتم
یکی از واحدهای ۲۵۰ مگاواتی سنتی از مدار خارج شده و توان مورد
نیاز از طریق توان بادی و ذخیره‌ساز تامین می‌شود. میزان ذخیره‌ساز
سایت اکتیک، میزان انرژی تولیدی به را در طول دوره برای ذخیره‌ساز
و از آن در طول دوره کمبالی و شکل (6) نشان داده شده.

شکل‌های (7) و (8) یک نمونه از روند تولید بادی و ذخیره‌ساز
و میزان رشد به یک نمونه کشت توان سنین را در طول دوره
مشت ساله سیستم توانهی گردید.

شیه سازی

به طور خلاصه چندین نوشته:

Minimize: \[
LOLE, LOLE_{base}
\]

S.T. Loadgrowth=0.5 \%

که در اینجا میزانLOLE وLOLE_{base} در هر مرحلهLOLE محاسبه شده در اولین مرحله وLOLE سالیانه می‌باشد.

به بروز مونت کارلو

در اجزای قابلیت اطمینان سیستم‌های قدرت به روش مونت کارلو
تکنیکی با مدل دو حالت مارکوف، تولید سیستم به صورت کامل
احتمالات و بر مبنای FOR واحد تولید در نظر گرفته می‌شود.

شیه سازی‌ها به روش مونت کارلو صورت می‌گیرد، ابتدا یک
عدد با توزیع یک‌ها در باره (0.1) انتخاب می‌شود. این عدد باین‌گار
وضعیت سیستم برای حالت‌های تولید و با خروج اجبای سیستم می
باشد. عدد انحصار شده به Sیستم مقایسه و در صورتی که عدد
(Up) Sیستم برگردنبندش سیستم در وضعیت Sیستم
انتحال از
فوروارد در حالتی که عدد انتحال به Sیستم مسئولی یا آن
کوچکتر این بسیار در وضعیت خروج اجبای FOR (Down)
این روند برای تمامی واحد‌های تولید سیستم به طور همزمان اجرای
می‌گردد. پس از اینکه وضعیت تولید تمامی واحدها در مرحله اول

(37)
با مدل‌های همچون افزایش سرعت باد، تغییرات باد و هم‌اکنون است. لذا برای این چنین شرایطی، تأیید نمی‌گردد که باید توان بادی 30 درصد کل توان شبکه قابل بررسی شود. کلیه مراحل فوق برای شبکه با موفقیت تست و استخراج گردیدند.

جدول (2): توان بادی و ایم مورد نیاز در یک دوره 8 ساله در LOLE

<table>
<thead>
<tr>
<th>سال</th>
<th>میزان توان بادی و ذخیره ساز</th>
<th>میزان سالهای دیگر</th>
<th>درصد LOLE(d/day)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2850</td>
<td>3405</td>
<td>0.0</td>
</tr>
<tr>
<td>2</td>
<td>2993</td>
<td>3405</td>
<td>0.1</td>
</tr>
<tr>
<td>3</td>
<td>2993</td>
<td>3405</td>
<td>0.2</td>
</tr>
<tr>
<td>4</td>
<td>2993</td>
<td>3405</td>
<td>0.3</td>
</tr>
<tr>
<td>5</td>
<td>2993</td>
<td>3405</td>
<td>0.4</td>
</tr>
<tr>
<td>6</td>
<td>2993</td>
<td>3405</td>
<td>0.5</td>
</tr>
<tr>
<td>7</td>
<td>2993</td>
<td>3405</td>
<td>0.6</td>
</tr>
<tr>
<td>8</td>
<td>2993</td>
<td>3405</td>
<td>0.7</td>
</tr>
</tbody>
</table>

جدول (3): میزان مصرف در یک دوره 8 ساله در LOLE

<table>
<thead>
<tr>
<th>سال</th>
<th>میزان مصرف</th>
<th>درصد LOLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3005</td>
<td>8.0</td>
</tr>
<tr>
<td>2</td>
<td>3005</td>
<td>8.0</td>
</tr>
<tr>
<td>3</td>
<td>3005</td>
<td>8.0</td>
</tr>
<tr>
<td>4</td>
<td>3005</td>
<td>8.0</td>
</tr>
<tr>
<td>5</td>
<td>3005</td>
<td>8.0</td>
</tr>
<tr>
<td>6</td>
<td>3005</td>
<td>8.0</td>
</tr>
<tr>
<td>7</td>
<td>3005</td>
<td>8.0</td>
</tr>
<tr>
<td>8</td>
<td>3005</td>
<td>8.0</td>
</tr>
</tbody>
</table>

شکل (7): میزان مصرف در یک دوره 8 ساله

1. ARMA
2. Hierarchical Levels
3. Monte-Carlo
4. Two-state or Multi-state Markov model
5. Up
6. Down
7. Availability
8. DPLVC (Daily Peak Load Variation Curve)
9. LDC (Load Duration Curve)
10. LOLE (Loss of Load Expectation)
11. LOEE (Loss of Energy Expectation)
12. WECS (Wind Energy Conversion System)
13. WDG (Wind Turbine Generator)
14. Swift Current
15. Saskatchewan
16. Rated power output
17. Box and Muller method
18. Head
References

[23] Available at: "http://www.climate.weatheroffice.gc.ca"

